M1. (a) (i) **M1** The enthalpy change / heat change at constant pressure when 1 mol of a compound / substance / product

1

M2 Is formed from its (constituent) <u>elements</u>

1

M3 With all reactants and products / all substances in standard states

OR

All reactants and products / all substances in normal states under standard conditions / 100 kPa / 1 bar and specified T / 298 K

Ignore reference to 1 atmosphere

1

(ii) By definition

OR

Because they are elements

1

(iii) M1 $\Delta H_t = \Sigma \Delta H_t$ (products) $-\Sigma \Delta H_t$ (reactants)

1

M2 = -1669 - 3(-558) (This also scores M1)

1

M3 = (+) 5 (kJ mol⁻¹)

Correct answer gains full marks.

Assume the value is positive unless specifically stated as negative.

Credit 1 mark if -5 (kJ mol⁻¹).

For other incorrect or incomplete answers, proceed as follows:

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with 3BaO OR a clear statement of M1 which could be in words and scores only M1

1

- (b) (i) One from
 - Aluminium is expensive (to extract OR due to electrolysis)

The cost of heating strongly This requires a clear statement about cost 1 One from (ii) increase collision frequency OR more collisions OR more chance of colliding The answer MUST refer to more collisions. Ignore "more available to collide" 1 (c) Ba + $2H_2O \rightarrow Ba(OH)_2 + H_2$ (i) Ignore state symbols Allow multiples and correct ionic equations 1 Ba²⁺ + SO₄²⁻ → BaSO₄ (ii) М1 (or the ions together) Allow crossed out Na⁺ ions, but penalise if not crossed out **M2** White precipitate / white solid Ignore state symbols Ignore "milky" 1 (iii) М1 Barium meal or (internal) X-ray or to block X-rays 1 M2 BaSO₄ / barium sulfate is insoluble (and therefore not toxic) Accept a correct reference to M1 written in the explanation in M2, unless contradictory. For M2 NOT barium ions NOT barium NOT barium meal and NOT "It".

High energy cost

[14]

Ignore radio-tracing.

- M2. (a) The enthalpy change when 1 mol of a compound

 is completely burnt in oxygen

 under standard conditions, or 298K and 100kPA
 - (b) (i) $C_2H_6 + 31/2O_2 \rightarrow 2CO_2 + 3H_2O$ 1

 (ii) $\Delta H = 2 \times \Delta H_{i^{\circ}}(CO_2) + 3 \times \Delta H_{i^{\circ}}(H_2O) \Delta H_{i^{\circ}}(C_2H_6)$ 1

 = -788 858 (-85)1

 = $-1561 \text{ kJ mol}^{-1}$
 - (c) moles methane = $\frac{0.10}{16}$ = 6.25×10^{-3} kJ evolved = $6.25 \times 10^{-3} \times 890 = 5.56$ 5.56×10^{3} joules = (mc) Δ T

$$\Delta T = \frac{5.56 \times 10^3}{120} = 46.4 \text{ K}$$

[11]

M3. (a) enthalpy change/ heat energy change when 1 mol of a substance

is completely	burned	in	oxygen
---------------	--------	----	--------

1

1

at 298K and 100 kPa or standard conditions

(not 1atm)

(b) $\Delta H = \sum bonds broken - \sum bonds formed$

1

$$= (6 \times 412) + 612 + 348 + (4.5 \times 496) - ((6 \times 743) + (6 \times 463))$$

1

1

(c) by definition $\Delta H_{\rm f}$ is formation from an element

1

(d) $\Delta H_c = \sum \Delta H_t$ products $-\sum \Delta H_t$ reactants or cycle

1

$$= (3 \times -394) + (3 \times -242) - (+20)$$

1

(e) bond enthalpies are mean/average values

1

1

from a range of compounds

[12]

M4.(a) Enthalpy change when 1 mol of compound (1)

Is formed from it's elements (1)

All substances in their standard state (1)

3

(b)
$$\Delta H = \Sigma \Delta H^{\circ}c$$
 (reactants) $-\Sigma \Delta H^{\circ}c$ (products) (1)
= $(7x - 394) + (4x - 286) - (-3909)$ (1)
= $+7 \text{ kJmol}^{-1}$ (1)

3

(c) Heat change =
$$m c \Delta T (1)$$

$$= 250 \times 4.18 \times 60 = 62700 J = 62.7 kJ (1)$$

Moles
$$C_7H_8 = 2.5/92 = 0.0272$$
 (1)

$$\Delta H = 62.7 / 0.0272 = -2307 \text{ kJ mol}^{-1} (1)$$
(allow -2300 to -2323)

4

Heat change =
$$75 \times 4.18 \times 8.5 = 2665 \text{ J} = 2.665 \text{ kJ}$$
 (1)

Moles HCl = 0.05 (1)

$$\Delta H = -2.665 / 0.05 = -53.3 \text{ kJmol}^{-1} (1)$$
(allow -53 to -54)

4

1

(e) Less heat loss (1)

[15]