M1.(a) Multiply volume of propan-1-ol by density
Allow measure the mass of the volume added
Any reference to concentration of propan-1-ol CE $=0$

Divide the mass by the $M_{r}$ of propan-1-ol
(b) Titrate a measured volume of the concentrated HCl added initially to determine moles of HCl used in the experiment

Allow addition of $\mathrm{AgNO}_{3}$ to form AgCl precipitate. Use mass of precipitate to calculate initial moles of HCl added.

Subtract this number of moles of HCl from the total moles of acid at equilibrium
(c) M1 ester will evaporate / escape

Allow reactants / products will evaporate

M2 incorrect values used (to determine $\mathrm{K}_{\mathrm{c}}$ )
Allow the system will no longer be at equilibrium
Do not allow references to equilibrium position shifting alone

M2.(a) Bonds broken $=2(\mathrm{C}=\mathrm{O})+3(\mathrm{H}-\mathrm{H})=2 \times 743+3 \times \mathrm{H}-\mathrm{H}$
Bonds formed $=3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+3(\mathrm{O}-\mathrm{H})=3 \times 412+360+3 \times 463$
Both required
$-49=[2 \times 743+3 \times(\mathrm{H}-\mathrm{H})]-[3 \times 412+360+3 \times 463]$
$3(\mathrm{H}-\mathrm{H})=-49-2 \times 743+[3 \times 412+360+3 \times 463]=1450$
Both required

```
H-H = 483 (kJ mol
                        Allow 483.3(3)
```

(b) Mean bond enthalpies are not the same as the actual bond enthalpies in $\mathrm{CO}_{2}$ (and / or methanol and / or water)
(c) The carbon dioxide (produced on burning methanol) is used up in this reaction
(d) 4 mol of gas form 2 mol

At high pressure the position of equilibrium moves to the right to lower the pressure / oppose the high pressure

This increases the yield of methanol
(e) Impurities (or sulfur compounds) block the active sites

Allow catalyst poisoned
(f) Stage 1: moles of components in the equilibrium mixture

Extended response question

$$
\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

| Initial <br> moles | 1.0 | 3.0 | 0 | 0 |
| :--- | :---: | :---: | :---: | :---: |
| Eqm | $(1-0.86)$ | $(3-3 \times 0.86$ | 0.86 | 0.86 |
| moles | $=0.14$ |  |  |  |

$$
=0.42
$$

Stage 2: Partial pressure calculations
Total moles of gas $=2.28$
Partial pressures $=$ mol fraction $\times \mathrm{p}_{\text {toal }}$
$\mathrm{p}_{\mathrm{co} 2}=\mathrm{mol}$ fraction $\times \mathrm{p}_{\text {toal }}=0.14 \times 500 / 2.28=30.7 \mathrm{kPa}$
$\mathrm{p}_{\mathrm{H} 2}=$ mol fraction $\times \mathrm{p}_{\text {total }}=0.42 \times 500 / 2.28=92.1 \mathrm{kPa}$
M3 is for partial pressures of both reactants
Alternative M3 =
$p p_{\text {co2 }}=0.0614 \times 500$
$p p_{\text {H } 2}=0.1842 \times 500$
$\mathrm{p}_{\text {снзон }}=\mathrm{mol}$ fraction $\times \mathrm{p}_{\text {total }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa}$
$\mathrm{p}_{\text {H2O }}=$ mol fraction $\times \mathrm{p}_{\text {toal }}=0.86 \times 500 / 2.28=188.6 \mathrm{kPa}$
M4 is for partial pressures of both products
Alternative M4 =
$p p_{\text {снзон }}=0.3772 \times 500$

$$
p p_{\text {нго }}=0.3772 \times 500
$$

Stage 3: Equilibrium constant calculation
$K_{\mathrm{p}}=\mathrm{p}_{\text {снзон }} \times \mathrm{p}_{\mathrm{HzO}} / \mathrm{p}_{\mathrm{CO} 2} \times\left(\mathrm{p}_{\mathrm{H} 2}\right)^{3}$

Hence $K_{\mathrm{p}}=188.6 \times 188.6 / 30.7 \times(92.1)^{3}=1.483 \times 10^{-3}=1.5 \times 10^{-3}$
Answer must be to 2 significant figures

Units $=\underline{k P a}^{-2}$

M3.A

M4.B

M5.D

M6. (a) (must state correct effect on yield or rate to score the reason mark)
T effect: higher temp: yield greater or shifts equilibrium to right;
effect: higher temp: rate increased;
1
reason: endothermic
OR
more particles have $\mathrm{E}>\mathrm{E}_{\mathrm{a}}$

OR
more successful/productive collisions;

P effect: higher pressure: yield less or shifts equilibrium to left;
1
effect: higher pressure: rate increased;
reason: increase in gas moles $L$ to $R$
OR
greater collision frequency;
(Q of $L$ mark)
(b) M1 equilibrium moles of $\mathrm{CO}=62.8-26.2=36.6$

M2 equilibrium moles of $\mathrm{H}_{2}=146-2(26.2)=93.6$

M3 total no moles $=36.6+93.3+26.2=156.4$

M4 partial pressure $=$ mole fraction $x$ total pressure

M5 $\quad \mathrm{PCO} \times \mathrm{P}^{2} \mathrm{H}_{2}$
1

1

1

1

M7 $\quad 0.022(1) \quad 2.2(I) \times 10^{-8} \quad 2.2(I) \times 10^{-14}$

M8
$=\frac{\left(\frac{26.2}{156.4} \times 9.50\right)}{\left(\frac{36.6}{156.4} \times 9.50\right) \times\left(\frac{93.6}{156.4} \times 9.50\right)^{2}}$
( $0.168 \times 9.5$ )
$\overline{(0.234 \times 9.50) \times(0.598 \times 9.5)^{2}}$ $\frac{(1.59)}{(2.22) \times(5.69)^{2}}$

1

1
$\mathrm{MPa}^{-2} \quad \mathrm{kPa}^{-2} \quad \mathrm{~Pa}^{-2}$

If no subtraction lose M1, M2 and M3)
(If $\times 2$ missed in M2, lose both M2 and M3)
(If M1 gained but moles of $\mathrm{H}_{2}=73.2$ (i.e. double CO), M2 and M3 lost)
(If M1 gained but mol $\mathrm{H}_{2}=2(146-26.2), \mathrm{M} 2$ and M 3 lost) (If M1 and M2 correct but M3 lost for CE, penalise M6 also) (M4 can be gained from the numbers in the expression for M6 even if these numbers are wrong)
(If $K_{p}$ contains [] lose M5 but then mark on)
(If chemically wrong expression for $K_{p}$, lose M5, M6 and M7 (allow M8 conseq on their $K_{\rho}$ ))
(If divided by 9.5, or not used 9.5 at all, lose M6 and M7 (and M4))
(If tried to convert to kPa and is factor(s) of 10 out, penalise

M7.
(a) (i) $\left.\quad\left(K_{p}\right)=\left(p_{p_{2}}\right)^{2} / p_{x}\right)\left(p_{y}\right)^{3}$
(penalise use of square brackets, allow ())
(ii) $\quad \mathrm{X}(22-6) / 4=4(\mathrm{MPa})$
(mark is for value 4 only, ignore units)

(mark is for value 12 only)
(iii) $\quad K_{\mathrm{p}}=6.0^{2} / 4.0 \times 12.0^{3}=5.21 \times 10^{-3}$
(allow conseq on wrong values for $\boldsymbol{X}$ and $\boldsymbol{Y}$ e.g. $6^{2} / 3 \times 9^{3}=0.165$ )
(if $K_{p}$ wrong in (a)(i) CE)
$\mathrm{MPa}^{-2}$
(allow any unit of $P^{-2}$ provided ties to $P$ used for $K_{p}$ value)
(b) high pressure expensive (due to energy or plant costs)
(Rate is) slow (at lower temperatures)
1

