M1. (a) $12(\mathrm{kPa})$
pp $=$ mole fraction \times total pressure or mole fraction $=12 / 104$
$=0.115$
(allow 0.12)
(b) $68(\mathrm{kPa})$
(c) $\quad \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{pSO}_{3}\right)^{2}}{\left(\mathrm{pSO}_{2}\right)^{2} \times\left(\mathrm{pO}_{2}\right)}$
(If K_{ρ} wrong, allow consequential units only)
(penalise square brackets in expression but then mark on)

$$
=\frac{68^{2}}{24^{2} \times 12}
$$

$=0.669$
(Allow 0.67)
(Allow full marks in calculation consequential on their values in (a) and (b))
kPa^{-1}
(d) T_{2}
(Must be correct to score any marks in this section)

Exothermic

Reduce T to shift equilibrium to the right or forward reaction favoured by low T or K_{p} increases for low T or low T favours exothermic reaction
(e) Increase

None
1
[13]

M2.B

M3.D

M4.C

M5.D

M6.B

M7.C

M8. (a) M1 $\mathrm{K}_{\mathrm{p}}=(\mathrm{P} \mathrm{Y})^{3} .(\mathrm{P} \mathrm{Z})^{2} /(\mathrm{pW})^{2} \cdot\left({ }_{\mathrm{p}} \mathrm{X}\right) \quad N B[]$ wrong

M2 temperature

M3 increase

M4 particles have more energy or greater velocity/speed

M5 more collisions with $E>E_{a}$ or more successful collisions

M6 Reaction exothermic or converse

M7 Equilibrium moves in the left

Marks for other answers
Increase in pressure or concentration allow M1, M5, M6 Max 3
Addition of a catalyst;
Decrease in temperature;
Two or more changes made;
allow M1, M5, M6
Max 3
Max 3
Max 2
(b) (i) Advantage; reaction goes to completion, not reversible or faster

Disadvantage; reaction vigorous/dangerous
(exothermic must be qualified)
or $\mathrm{HCl}(\mathrm{g})$ evolved/toxic
or $\mathrm{CH}_{3} \mathrm{COCl}$ expensive
NB Allow converse answers
Do not allow reactions with other reagents e.g. water or ease of separation
(ii) $\Delta S=\Sigma S$ products $-\Sigma S$ reactants

ำดา $\Delta S=(259+187)-(201+161)$

Allow - 84 to score (1) mark
$=-21.6-298 \times 84 / 1000$
$=-46.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $-46600 \mathrm{~J} \mathrm{~mol}^{-1}$
Allow (2) for - 46.6 without units
(Mark ΔG consequentially to incorrect ΔS)
(e.g. $\Delta S=-84$ gives $\Delta G=+3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$)

M9. (a) (i) Moles of $\mathrm{PC}_{3}: 0.345-0.166=0.179$ (1)
Moles of $\mathrm{Cl}_{2}: 0.268-0.166=0.102$ (1)
3 sig figs
(ii) 0.447 (1)
allow 2 sig figs conseq on (i)
(b) Mole fraction of $\mathrm{PCl}_{3}: 0.179 / 0.447(1)=0.4(00)$

Partial pressure of PCl_{3} : $\mathrm{pp}=\mathrm{mol} \mathrm{f}_{\mathrm{n}} \times$ total P (1)

$$
=0.400 \times 225=90(1) \mathrm{kPa}(1)
$$

(c) (i) $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{PCl}}}{\mathrm{P}_{\mathrm{PCl}} \times \mathrm{P}_{\mathrm{Cl}_{2}}}$
ignore brackets except []
must show P
(ii) $\quad \mathrm{K}_{\mathrm{p}}=\frac{83.6}{90.1 \times 51.3}(\mathbf{1})=1.8(\mathbf{1}) \times 10^{-2}(\mathbf{1}) \mathrm{Kpa}^{-1}(\mathbf{1})\left(\right.$ or $\left.1.81 \times 10^{-5} \mathrm{~Pa}^{-1}\right)$

If 83.6 and 51.3 wrong way round, $A E-1$,
answer $=6.81 \times 10^{-3}$
If $K_{\rho} \times$ in (i) allow max 2 for substitution of numbers and conseq units
(d) (i) increased (1)
(ii) increased (1)

Organic points

(1) Curly arrows: must show movement of a pair of electrons, i.e. from bond to atom or from Ip to atom / space e.g.

OR

(2) Structures
penalise sticks (i.e.

or
 or $-\mathrm{NH}_{3}$

or

Penalise once per paper
allow $\mathrm{CH}_{3}-$ or $-\mathrm{CH}_{3}$ or $\stackrel{\mathrm{CH}_{3}}{\text { I }} \mathrm{CH}_{3}$ or $\mathrm{H}_{3} \mathrm{C}-$

M10.
(a) $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{SO}_{2}} \times \mathrm{P}_{\mathrm{Cl}_{2}}}{\mathrm{P}_{\mathrm{SO}_{2} \mathrm{Cl}}}$
(c) (i) $p=$ Total pressure \times mol fraction (1)
(ii) Partial of $\mathrm{SO}_{2} \mathrm{C}_{2}: 125 \times \frac{0.25}{1.75}=17.9 \mathrm{kPa}$ (1)

Partial pressure of $\mathrm{Cl}_{2}: 125 \times \frac{0.75}{1.75}=53.6 \mathrm{kPa}$ (1) (1)
(d) $\mathrm{K}_{\mathrm{p}}=\frac{53.6 \times 53.6}{17.9}$ (1) $=161$ (1) kPa (1)
(e) Effect on K_{ρ} : increase (1)

Explanation: increase T sends equilibrium in endothermic direction (1)
(f) no effect (1)

Notes

(a) If K_{p} has [] lose mark in (a) but allow full marks in (d)

If K_{p} wrong/upside down etc, allow max 2 in (d) for substitution of numbers (1) and consequential units (1)
(b) Mark for moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ can be scored in part (c) (ii) if not gained in (b)

1.75 get (2)

If moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=1$, this is a Chemical Error, hence a 2 mark penalty

- If total moles given in (b) $=1.75$, this scores [2] in (b); but if the no moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=1$ in (c)(ii), lose both marks in (c)(ii) for pp of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=(1 / 1.75) \times 125$, i.e. the 2 mark penalty is in (c)(ii).
- If total moles given in (b) = 2.5, score zero in (b), but can gain full marks in (c)(ii) consequentially, i.e. the 2 mark penalty is in (b).
- If moles of $\mathrm{SO}_{2} \mathrm{Cl}_{2}=1$ and total in (b) does not equal 2.5, still lose both in (b) but can get all 4 conseq in (c)(ii) for $1 / x$ etc and $0.75 / x$ etc
(c) (i) Allow "Total pressure $=$ sum of partial pressures" for (1) or $p_{A}=x_{A} \times p_{\text {bot }}$
(ii) First mark is for mole fraction.

If either number in either mole fraction is not consequential on (b), then lose both marks for that partial p.
(d) If pCl_{2} is not equal to pSO_{2} or any number used in K_{p} is not conseq on (c)(ii), allow units only

SIG FIGS; must be 3 sig figs in (b) but then allow 2 sig figs in (c) and (d); (ignore extra figs) but penalise incorrect rounding
(e) If effect wrong, no marks for explanation. If effect missing, e.g. answer states "equm shifts to right", mark on. In the explanation, the word "endothermic" (or its equivalent) is essential.

