M1.(a) $94-105.5^{\circ}$
(b) (i) Hydrogen bond(ing) / H bonding / H bonds Not just hydrogen
(ii)

OR

1 mark for all lone pairs
1 mark for partial charges on the O and the H that are involved in H bonding
1 mark for the H -bond, from $\mathrm{H} \delta+$ on one molecule to lone pair on O of other molecule
(c) Electronegativity of S lower than O or electronegativity difference between H and S is lower

Mark independently

No hydrogen bonding between $\mathrm{H}_{2} \underline{\mathrm{~S}}_{2}$ molecules
Or only van der Waals / only dipole-dipole forces between $\mathrm{H}_{2} \underline{\mathrm{~S}}_{2}$ molecules If breaking covalent bonds $C E=0$

M2.(a) (i) Hydrogen bonds / H bonds
Not just hydrogen.
(ii)

(b) Lone pair / both electrons / 2 electrons / electron pair on $\mathrm{N}\left(\mathrm{H}_{3}\right)$ is donated to $\mathrm{B}\left(\mathrm{Cl}_{3}\right)$

Allow both electrons in the bond come from $N\left(\mathrm{H}_{3}\right)$.
(c) (i) The power of an atom or nucleus to withdraw or attract electrons or electron density or a pair of electrons (towards itself)

(ii) LiF OR $\mathrm{Li}_{2} \mathrm{O}$ OR LiH

Allow $\mathrm{Li}_{2} \mathrm{O}_{2}$, allow correct lithium carbide formula.
(iii) $\mathrm{BH}_{3} / \mathrm{H}_{3} \mathrm{~B}$

Allow $B_{2} H_{6} / H_{6} B_{2}$
Do not allow lower case letters.

M3.C

M4.(a) A mixture of liquids is heated to boiling point for a prolonged time

Vapour is formed which escapes from the liquid mixture, is changed back into liquid and returned to the liquid mixture

Any ethanal and ethanol that initially evaporates can then be oxidised
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$

Water cooled condenser connected to the still head and suitable cooled collecting vessel

Collect sample at the boiling point of ethanal

Cooled collection vessel necessary to reduce evaporation of ethanal
(d) Hydrogen bonding in ethanol and ethanoic acid or no hydrogen bonding in ethanal

Intermolecular forces / dipole-dipole are weaker than hydrogen bonding
(e) Reagent to confirm the presence of ethanal:

Add Tollens' reagent / ammoniacal silver nitrate / aqueous silver nitrate followed by 1 drop of aqueous sodium hydroxide, then enough aqueous ammonia to dissolve the precipitate formed

OR

Add Fehling's solution

Warm
M2 and M3 can only be awarded if M1 is given correctly

Result with Tollen's reagent:
Silver mirror / black precipitate

OR

Result with Fehling's solution:
Red precipitate / orange-red precipitate

Reagent to confirm the absence of ethanoic acid Add sodium hydrogencarbonate or sodium carbonate

Result; no effervescence observed; hence no acid present
M5 can only be awarded if M4 is given correctly
OR
Reagent; add ethanol and concentrated sulfuric acid and warm
Result; no sweet smell / no oily drops on the surface of the liquid, hence no acid present

M5.A

M6.(a) $\quad \Delta S=238+189-214-3 \times 131=-180 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\Delta G=\Delta H-T \Delta S$

$$
\begin{aligned}
& =+45.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \quad \text { Units essential }
\end{aligned}
$$

(b) When $\Delta G=0, \Delta H=T \Delta S$ therefore $T=\Delta H / \Delta S$

$$
\begin{aligned}
& =-49 \times 1000 /-180=272(\mathrm{~K}) \\
& \quad \text { Mark consequentially to } \Delta S \text { in part }(\mathrm{a})
\end{aligned}
$$

(c) Diagram marks

Diagram of a molecule showing $\mathrm{O}-\mathrm{H}$ bond and two lone pairs on each oxygen

Labels on diagram showing $\delta+$ and δ - charges
Allow explanation of position of $\delta+$ and δ - charges on H and O

Diagram showing $\delta+$ hydrogen on one molecule attracted to lone pair on a second molecule

Explanation mark

Hydrogen bonding (the name mentioned) is a strong enough force (to hold methanol molecules together in a liquid)

M7.D

M8.C

