M1.(a) $\underline{164.0}$

Must be 1 decimal place

(b) $17.1(\%)(=28.0 \times 100 /$ Qa)

Consequential on their (a)
Ignore precision but must be to at least 2 sig fig.
(i.e. accept 17 or 17.07)
(c) (i) Absorption depends on (proportional to) path length / distance travelled through solution

Do not allow size.
(ii) To select the colour / frequency / wavelength that is (most strongly) absorbed (by the sample)

Allow the filter is chosen to complement the colour of the solution
(iii) Quicker to analyse extracted samples than by titration / uses smaller volumes of solution

M2.(a) $\Delta E=h v$

$$
\text { Allow }=h f
$$

$$
v=\Delta E / h=2.84 \times 10^{-19} / 6.63 \times 10^{-34}=4.28 \times 10^{14} \mathrm{~s}^{-1} / \mathrm{Hz}
$$

Allow $4.3 \times 10^{14} \mathrm{~s}^{-1} \mathrm{~Hz}$
Answer must be in the range:

$$
4.28-4.30 \times 10^{14}
$$

(b) (One colour of) light is absorbed (to excite the electron)

The remaining colour / frequency / wavelength / energy is transmitted (through the solution)

Allow light reflected is the colour that we see.
(c) Bigger

Blue light would be absorbed
OR light that has greater energy than red light would be absorbed $O R$ higher frequency (of light absorbed / blue light) leads to higher ΔE Can only score M2 if M1 is correct.
(d) Any three from:

- (Identity of the) metal
- Charge (on the metal) / oxidation state / charge on complex
- (Identity of the) ligands
- Co-ordination number / number of ligands
- Shape

3 max

M3.(a) Orange dichromate
Allow max 2 for three correct colours not identified to species but in correct order

That changes further to blue Chromium(II)
Allow max 1 for two correct colours not identified but in correct order
$\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]^{2}+14 \mathrm{H}^{+}+3 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Zn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
2 \mathrm{Cr}^{3+}+\mathrm{Zn} & \rightarrow 2 \mathrm{Cr}^{2+}+\mathrm{Zn}^{2+} \text { / } \\
& \text { Ignore any further reduction of } \mathrm{Cr}^{2+}
\end{aligned}
$$

$\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]^{2+}+14 \mathrm{H}^{+}+4 \mathrm{Zn} \rightarrow 2 \mathrm{Cr}^{2+}+4 \mathrm{Zn}^{2+}+7 \mathrm{H}_{2} \mathrm{O}$
Ignore additional steps e.g. formation of $\mathrm{CrO}_{4}{ }^{2}$
(b) Green precipitate
(Dissolves to form a) green solution
Solution can be implied if 'dissolves stated

$$
\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

Penalise $\mathrm{Cr}(\mathrm{OH})_{s}$ once only

$$
\begin{aligned}
& \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O} \\
& \text { Allow }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{OH} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{e^{3}}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O} \\
& \text { Allow formation of }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{2} \text { and }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})_{5}\right]^{2} \text { in } \\
& \text { balanced equations } \\
& \text { Ignore state symbols, mark independently }
\end{aligned}
$$

(c) (ligand) substitution / replacement / exchange

Allow nucleophilic substitution

The energy levels/gaps of the \underline{d} electrons are different (for each complex) Ignore any reference to emission of light

So a different wavelength/frequency/colour/energy of light is absorbed (when d electrons are excited)

OR light is absorbed and a different wavelength/frequency/colour/energy (of light) is transmitted/reflected
(d) $E O_{2}\left(/ \mathrm{H}_{2} \mathrm{O}\right)>E \mathrm{Cr}^{3+}\left(/ \mathrm{Cr}^{2+}\right) /$ e.m.f $=1.67 \mathrm{~V}$

Allow E (cell) $=1.67$

So Cr^{2+} ions are oxidised by oxygen/air
Allow any equation of the form:
$\mathrm{Cr}^{2+}+\mathrm{O}_{2} \rightarrow \mathrm{Cr}^{+}$

With $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ get CrCO_{3}
If named must be chromium(II) carbonate
with $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ get $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3} / \mathrm{Cr}(\mathrm{OH})_{3}$
Allow 0 to 3 waters in the complex
and CO_{2}
Can score M3, M4, M5 in equations even if unbalanced
$\mathrm{Cr}($ III $)$ differs from $\mathrm{Cr}(\mathrm{II})$ because it is acidic / forms H^{+}ions
because Cr^{3+} ion polarises water

M4.(a)For reactions 1 to 3 must show complex ions as reactants and products
 Take care to look for possible identification on flow chart

Reaction 1

ammonia solution

W is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{b}}\right]^{2+}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$
Correct equation scores all 3 marks

Reaction 2

Allow oxygen, Do not allow air
$\mathrm{H}_{2} \mathrm{O}_{2}$
\mathbf{X} is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

```
\(2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+2 \mathrm{OH}\)
    Allow \(2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{e^{2+}}+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{]^{3+}}+2 \mathrm{OH}\right.\right.\)
    Correct equations score all 3 marks
```


Reaction 3

HCl
Do not allow Cl but mark on
\mathbf{Y} is $\left[\mathrm{CoCl}_{4}\right]^{2}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} /$
Correct equation scores previous mark
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{2+}}\right]^{2+} 4 \mathrm{HCl} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{-2}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{+}$
This equation scores all three marks

Reaction 4

$\mathrm{Na}_{2} \mathrm{CO}_{3} \quad$ Or NaOH/ NH_{3}
Do not allow CaCO_{3} as a reagent but mark on
\mathbf{Z} is $\mathrm{CoCO}_{3} \quad \mathrm{Co}(\mathrm{OH})_{2} / \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{CO}_{3}^{2 .} \rightarrow \mathrm{CoCO}_{3}+6 \mathrm{H}_{2} \mathrm{O} \quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{O}$ etc
Allow waters to stay co-ordinated to Co. This mark also previous mark

Or $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{2+}}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CoCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Na}^{+}\right.$
Allow $\mathrm{Co}^{2+}+\mathrm{CO}_{3}{ }^{2} \rightarrow \mathrm{CoCO}_{3}$
(b) $\mathrm{SO}_{3}^{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{4}^{2}$

Allow multiples

The activation energy is lower (for the catalysed route)
Or Co ${ }^{3+}$ attracts $\mathrm{SO}_{3}{ }^{2} / \mathrm{Co}^{2+}$ attracts $\mathrm{SO}_{3}{ }^{2} /$ /oppositely charged
$1 / 2 \mathrm{O}_{2}+2 \mathrm{Co}^{2+}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Co}^{3+}$
$2 \mathrm{Co}^{3+}+\mathrm{SO}_{3}{ }^{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Co}^{2+}+\mathrm{SO}_{4}{ }^{2}+2 \mathrm{H}^{+}$
Allow these equations in either order

