M1. (a) (i) Ammonia If reagent is missing or incorrect cannot score M3

Starts as a pink (solution)

Changes to a yellow/straw (solution)
Allow pale brown
Do not allow reference to a precipitate
(ii) (dark) brown

Do not allow pale/straw/yellow-brown (i.e. these and other shades except for dark brown)
(b) (i) Ruby/red-blue/purple/violet/green

Do not allow red or blue
If ppt mentioned contradiction/CE =0

Green
If ppt mentioned contradiction/CE $=0$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}$

Formula of product
Can score this mark in (b) (ii)
(ii) $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-}$
$2\left[\mathrm{Cr}(\mathrm{OH})_{\mathrm{E}^{2}}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
Allow 1 mark out of 2 for a balanced half-equation such as
$\mathrm{Cr}(\mathrm{III}) \rightarrow \mathrm{Cr}(\mathrm{VI})+3 e^{-}$
or $\mathrm{Cr}^{++}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+8 \mathrm{H}^{+}+3 e^{-}$etc
also for $2 \mathrm{Cr}(\mathrm{III})+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CrO}_{4}^{2-}$ (unbalanced)

Yellow
(c) $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}$
if no equation and uses given ratio can score M2, M3, M4 \& M5

Moles $\mathrm{MnO}_{4}^{-}=(24.35 / 1000) \times 0.0187=\underline{4.55 \times 10^{-4}}$
Note value must be quoted to at least 3 sig. figs.
M2 is for 4.55×10^{-4}
1

Moles $\mathrm{H}_{2} \mathrm{O}_{2}=\left(4.55 \times 10^{-4}\right) \times 5 / 2=1.138 \times 10^{-3}$
M3 is for $\times 5 / 2$ (or $7 / 3$)
Mark consequential on molar ratio from candidate's equation

Moles $\mathrm{H}_{2} \mathrm{O}_{2}$ in $5 \mathrm{~cm}^{3}$ original
M4 is for $\times 10$
$=\left(1.138 \times 10^{-3}\right) \times 10=0.01138$
Original $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.01138 \times(1000 / 5)=2.28 \mathrm{~mol} \mathrm{dm}^{-3}$
(allow 2.25-2.30)
M5 is for consequentially correct answer from (answer to mark 4) $\times(1000 / 5)$
Note an answer of between 2.25 and 2.30 is worth 4 marks)
If candidate uses given ratio $3 / 7$ max 4 marks:
M1: Moles of $\mathrm{MnO}_{4}^{-}=4.55 \times 10^{-4}$
M2: Moles $\mathrm{H}_{2} \mathrm{O}_{2}=\left(4.55 \times 10^{-4}\right) \times 7 / 3=1.0617 \times 10^{-3}$
M3: Moles $\mathrm{H}_{2} \mathrm{O}_{2}$ in $5 \mathrm{~cm}^{3}$ original
$=\left(1.0617 \times 10^{-3}\right) \times 10=0.01062$
M4: Original $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.01062 \times(1000 / 5)=2.12 \mathrm{~mol} \mathrm{dm}^{-3}$
(allow 2.10 to 2.15)

M2. (a) $\mathrm{CaF}_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{~F}^{-}(\mathrm{g})$
(b) (i) Enthalpy change for formation of 1 mol of substance

Allow heat energy change, NOT energy

From its elements
1
Reactants and products/all substances in their standard states Or normal states at $298 \mathrm{~K}, 1$ bar (100 kPa)
(ii) $\mathrm{Ca}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})$
(iii) $\quad \Delta H_{(}\left(\mathrm{CaF}_{2}\right)=\Delta H_{\mathrm{a}}(\mathrm{Ca})+1$ st IE(Ca) $+2^{\text {nd }} \mathrm{IE}(\mathrm{Ca})+\mathrm{BE}\left(\mathrm{F}_{2}\right)+$ $2 \times \mathrm{EA}(\mathrm{F})-\Delta H_{4}\left(\mathrm{CaF}_{2}\right)$

Or labelled diagram
$=193+590+1150+158+(2 \times-348)-2602$
$=-1207 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Correct answer scores 3
-842 scores 2 (transfer error)
-859 scores 1 only (using one E.A.)
Units not required, wrong units lose 1 mark
(c) Electrostatic attraction stronger/ionic bonding stronger/attraction between ions stronger/more energy to separate ions

Molecular attraction/atoms/intermolecular forces CE=0

Because fluoride (ion) smaller than chloride
Do not allow F or fluorine
(d) (i) $\Delta H=\Delta H_{\mathrm{L}}+\Sigma \Delta H_{\text {nyd }}=2237-1650+(2 \times-364)$

Can be on cycle/diagram

$$
=-141 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Correct answer scores 2
Units not required, wrong units lose 1 mark
(ii) Decreases

If ans to (d)(i) positive allow increases

Reaction exothermic/ $\Delta \mathrm{H}$-ve
If (d)(i) +ve allow endothermic/ $\Delta H+v e$
(Equilibrium) shifts to left/backwards (as temperature rises)/equilibrium opposes the change

If (d) (i) +ve allow shifts to right/forwards/equilibrium opposes the change
If no answer to (d) (i) assume -ve ΔH used If effect deduced incorrectly from any $\triangle H C E=0$ for these 3 marks
(e) u.v. absorbed: electrons/they move to higher energy (levels)/electrons excited
visible light given out: electrons/they fall back down/move to lower energy (levels)

Must refer to absorbing u.v. NOT visible light or this must be implied.

M3. (a) Partially filled/incomplete d sub-shell/orbital/shell
Ignore reference to forbitals
Do not allow d block
Do not allow half-filled d orbitals

1
(b) Has ligand(s)

Allow molecules/ions with lone pairs
linked by co-ordinate bonds
Allow dative/donation of lone pair
(c) (Blue) light is absorbed (from incident white light)

Due to electrons moving to higher levels/electrons excited
Allow $d \rightarrow d$ transitions

Red light (that) remains (is transmitted)/light that remains (transmitted light) is the colour observed

Allow red light reflected
(d) (i) Circle round any O^{-}

List principle

Circle round either N
(ii) $\mathrm{EDTA}^{4}+\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{]^{2+}}\right]^{2+}[\mathrm{CoEDTA}]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Allow missing square brackets Ignore state symbols
(iii) Increase in entropy/ ΔS positive

Or increase in disorder

Because 2 mol (of particles/molecules/species/entities) form 7 mol
Allow 'increase in number' as stated in words or as shown by any numbers deduced correctly from an incorrect equation
Do not allow increase in ions/atoms
(e) (i) Co-ordinate/dative/dative covalent bond

Allow pair of electrons donated by nitrogen/ligand
Do not allow pair of electrons donated from Iron/Fe

Covalent bond
 Shared electron pair

(ii) Transport of oxygen/ O_{2}

Allow any statement that implies oxygen carried (around the body)
Do not allow transport of carbon dioxide (CO_{2}). This also contradicts the mark (list principle)

Displaces oxygen
Or prevents transport of oxygen QoL

