M1.		(a)	(i)	Ammonia If reagent is missing or incorrect cannot score M3	1
			Star	ts as a pink (solution)	1
			Cha	nges to a yellow/straw (solution)	
				Do not allow reference to a precipitate	1
	(ii)	(dai	rk) bro	own Do not allow pale/straw/yellow-brown (i.e. these and other shades except for dark brown)	1
	(b)	(i)	Rut	by/red-blue/purple/violet/green Do not allow red or blue If ppt mentioned contradiction/CE =0	1
			Gree	en If ppt mentioned contradiction/CE =0	1
			[Cr(I	$H_2O)_{\scriptscriptstyle 6}]^{\scriptscriptstyle 3*} + 6OH^{\scriptscriptstyle -} \to [Cr(OH)_{\scriptscriptstyle 6}]^{\scriptscriptstyle 3-} + 6H_2O$	1
			Forr	nula of product <i>Can score this mark in (b) (ii)</i>	1
		(ii)	H₂O	₂ + 2e [_] → 2OH [_]	1
			2[Cr	$(OH)_{6}]^{3-} + 3H_{2}O_{2} \rightarrow 2CrO_{4}^{2-} + 8H_{2}O + 2OH^{-}$ Allow 1 mark out of 2 for a balanced half-equation such as $Cr(III) \rightarrow Cr(VI) + 3e^{-}$ or $Cr^{3+} + 4H_{2}O \rightarrow CrO_{4}^{2-} + 8H^{+} + 3e^{-}$ etc also for $2Cr(III) + 3H_{2}O_{2} \rightarrow 2CrO_{4}^{2-}$ (unbalanced)	2

Yellow

(c)	$2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow 2Mn^{2+} + 8H_2O + 5O_2$ if no equation and uses given ratio can score M2, M3, M4 & M5	1			
	Moles MnO₄⁻ = (24.35/1000) × 0.0187 = <u>4.55 × 10⁴</u> Note value must be quoted to at least 3 sig. figs. M2 is for 4.55 × 10⁴	1			
	Moles $H_2O_2 = (4.55 \times 10^{-4}) \times 5/2 = 1.138 \times 10^{-3}$ M3 is for $\times 5/2$ (or 7/3) Mark consequential on molar ratio from candidate's equation	1			
	Moles H ₂ O ₂ in 5 cm ³ original <i>M4 is for</i> × 10	1			
	= (1.138 × 10⁻₃) <u>× 10</u> = 0.01138				
	Original [H₂O₂] = 0.01138 <u>× (1000/5)</u> = 2.28 mol dm⁻₃				
	(allow 2.25-2.30) M5 is for consequentially correct answer from (answer to mark 4) × (1000/5) Note an answer of between 2.25 and 2.30 is worth 4 marks) If candidate uses given ratio 3/7 max 4 marks: M1: Moles of $MnO_{4^-} = 4.55 \times 10^{-4}$ M2: Moles $H_2O_2 = (4.55 \times 10^{-4}) \times 7/3 = 1.0617 \times 10^{-3}$ M3: Moles H_2O_2 in 5 cm ³ original = (1.0617 × 10^{-3}) × 10 = 0.01062 M4: Original [H_2O_2] = 0.01062 × (1000/5) = 2.12 mol dm ⁻³ (allow 2.10 to 2.15)	1			

1

M2.		(a)	$CaF_2(s) \rightarrow Ca^{2+}(g) + 2F^{-}(g)$	1
	(b)	(i)	Enthalpy change for formation of 1 mol of substance Allow <u>heat energy change</u> , NOT energy	1
			From its elements	1
			Reactants and products/all substances in their standard states Or normal states at 298 K, 1 bar (100 kPa)	1
		(ii)	$Ca(s) + F_2(g) \rightarrow CaF_2(s)$	1
		(iii)	$\begin{array}{l} \Delta H_{\rm f}({\rm CaF_2}) = \Delta H_{\rm a}({\rm Ca}) + 1 {\rm st} \ {\rm IE}({\rm Ca}) + 2^{\rm nd} \ {\rm IE}({\rm Ca}) + {\rm BE}({\rm F_2}) + \\ 2 \times {\rm EA}({\rm F}) - \Delta H_{\rm L}({\rm CaF_2}) \\ Or \ labelled \ diagram \end{array}$	1
			= 193 + 590 + 1150 + 158 + (2 × -348) - 2602	1
			= –1207 kJ mol ⁻¹ Correct answer scores 3 –842 scores 2 (transfer error) –859 scores 1 only (using one E.A.) Units not required, wrong units lose 1 mark	1
	(c)	Elec betw	ctrostatic attraction stronger/ionic bonding stronger/attraction veen ions stronger/more energy to separate ions Molecular attraction/atoms/intermolecular forces CE=0	1
		Beca	ause fluoride (ion) smaller than chloride Do not allow F or fluorine	1
	(d)	(i)	$\Delta H = \Delta H_{L} + \Sigma \Delta H_{hyd} = 2237 - 1650 + (2 \times -364)$ Can be on cycle/diagram	1
			= –141 kJ mol⁻¹ Correct answer scores 2 Units not required, wrong units lose 1 mark	1

(ii) Decreases

	(")	If ans to (d)(i) positive allow increases	1
		Reaction exothermic/ Δ H –ve If (d)(i) +ve allow endothermic/ Δ H + ve	1
		(Equilibrium) shifts to left/backwards (as temperature rises)/equilibrium opposes the change If (d) (i) +ve allow shifts to right/forwards/equilibrium opposes the change	
		If no answer to (d) (i) assume –ve ΔH used If effect deduced incorrectly from any ΔH CE = 0 for these 3 marks	1
(e)	u.v. a (level	absorbed: electrons/they move to higher energy ls)/electrons excited	1
	visibl Iower	e light given out: electrons/they fall back down/move to r energy (levels) Must refer to absorbing u.v. NOT visible light or this must be	
			1

[17]

1

1

M3. (a) Partially filled/incomplete d sub-shell/orbital/shell Ignore reference to f orbitals Do not allow d block Do not allow half-filled d orbitals

(b) Has ligand(s)

Allow molecules/ions with lone pairs

	linke	ed by co-ordinate bonds Allow dative/donation of lone pair	1
(c)	(Blu	e) light is absorbed (from incident white light)	1
	Due	to electrons moving to higher levels/electrons excited Allow $d \rightarrow d$ transitions	1
	Red (trar	light (that) remains (is transmitted)/light that remains asmitted light) is the colour observed <i>Allow red light reflected</i>	1
(d)	(i)	Circle round any O [_] List principle	1
		Circle round either N	1
	(ii)	EDTA ^{₄-} + [Co(H₂O)₅]²+ → [CoEDTA]²- + 6H₂O Allow missing square brackets Ignore state symbols	1
	(iii)	Increase in entropy/∆S positive Or increase in disorder	1
		Because 2 mol (of particles/molecules/species/entities) form 7 mol Allow 'increase in number' as stated in words or as shown by any numbers deduced correctly from an incorrect equation Do not allow increase in ions/atoms	1
(e)	(i)	Co-ordinate/dative/dative covalent bond Allow pair of electrons donated by nitrogen/ligand Do not allow pair of electrons donated from Iron/Fe	1

(ii)	Transport of oxygen/O₂ Allow any statement that implies oxygen carried (around the body) Do not allow transport of carbon dioxide (CO₂). This also contradicts the mark (list principle)	1	
(iii)	Because it bonds to the iron/haemoglobin Allow blocks site /CO has greater affinity for haemoglobin /carboxyhaemoglobin more stable than oxyhaemoglobin	1	
	Displaces <u>oxygen</u> Or prevents transport of <u>oxygen</u> QoL	1	[16]

1