M1. (a) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
octahedral
Only allow if species has 6 ligands but allow if M1 not given because charge missing
(b) CoCO_{3}

Mark independently

Purple solid (allow pink)
Allow pink precipitate
(c) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{]^{2+}}+6 \mathrm{H}_{2} \mathrm{O}\right.$

Allow $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}\right]^{3+}$
Formula of product

Balanced equation
(d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\right]^{3+}$

Allow $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}\right]^{3+}$

Oxidising agent
(e) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}$

Allow use of en [Coen $]^{3+}$

Entropy change for reaction is positive
Mark independently

Because 4 mol reactants form 7 mol products
(or increase in number of particles)
(f) $\left[\mathrm{CoCl}_{4}\right]^{2-}$

Cl ligand too big to fit more than 4 round Co^{2+}
Allow Cl is bigger
Allow chlorine and Cl but NOT chlorine molecules.
1
[13]

M2. (a) $\mathrm{Ti}(\mathrm{IV})[\mathrm{Ar}]$
Or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

Ti(III) [Ar]3d ${ }^{1}$
Or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1}$
$\mathrm{Ti}(I I I)$ has a d electron that can be excited to a higher level
Allow idea that d electrons can be excited to another level (or
move between levels)

Absorbs one colour of light from white light
Allow idea that light is absorbed

Ti(IV) has no d electron so no electron transition with
energy equal to that of visible light
Allow Ti(IV) has no d electrons
(b) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
(c) (i) Rapid determination of concentration Or easy to get many readings

> Does not use up any of the reagent/does not interfere with the reaction
> Or possible to measure very low concentrations
(ii) Curve starts with small gradient (low rate)

Because negative ions collide so E_{a} high

Curve gets steeper

Because autocatalyst (Mn^{2+}) formed 1

Curve levels out approaching time axis
Can score this mark and next one ONLY with simple curve (that is curve with gradually decreasing gradient)

1
Because MnO_{4}^{-}ions used up 5 max

M3. (a) Ligand: -
atom, ion or molecules which can donate a pair of electrons to a metal ion.
co-ordinate bond:- a covalent bond
in which both electrons are donate by one atom
(b) (i) Two correct complex ions

Balanced equation

Two correct colours
1

2
(ii) Complex with a bidentate ligand

Balanced equation
\quad NB en not allowed as a ligand unless structure also given

More molecules/ions formed

Increase in entropy
more stable complex formed
1

1

1

1
Max 2
(c) ΔE; energy absorbed by electron, ground to excited state (QoL)
h; Planck's constant or a constant

Change in
Oxidation state

Ligand

Co-ordination number
Apply list principle to incorrect additional answers

M4. (a) Equation:
e.g. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{g}}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Species

Balance
1

Colours:
e.g $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ blue
e.g. $\left[\mathrm{CuCl}_{4}\right]^{2-}$ yellow/green

1
(b) (i) $\Delta \mathrm{E}$: The energy absorbed
h: Planck's constant
(ii) Factor 1 Change of ligand

Factor 2 Change in oxidation state 1

Factor 3 Change in co-ordination number

