
M1. (a)	Satura	ated – single bonds only / no double bonds	1
		Hydrocarbon – contains carbon and hydrogen (atoms) <u>only</u>	1
	(b)	$C_{16}H_{34} + 16.5O_2 \xrightarrow{\longrightarrow} 16CO + 17H_2O$ Allow multiples	1
	(c)	(On combustion) SO ₂ produced Allow equation to produce SO ₂ . Ignore sulfur oxides.	1
		Which causes acid rain If formula shown it must be correct M2 is dependent on M1. But if M1 is sulfur oxides, allow M2. For M2 allow consequence of acid rain or SO ₂ . Ignore greenhouse effect and toxic	1
	(d)	(i) $C_{16}H_{34} \longrightarrow C_8H_{18} + C_2H_4 + 2C_3H_6$ Allow multiples	1
		 (ii) polypropene / propan(-1 or 2-)ol / propane(-1,2-)diol / isopropanol / propanone / propanal Accept alternative names Ignore plastic and polymer 	1

(iii)

(c) (i) M1 Nitrogen and oxygen (from air) <u>react / combine</u> / allow a correct equation
 If nitrogen from petrol / paraffin / impurities CE = 0 / 2.

1

1

1

1

1

M2 at high temperatures Allow temperatures above 1000 °C or spark. Not just heat or hot. M2 dependent on M1. But allow 1 mark for nitrogen and oxygen together at high temperatures.

(ii) $2NO + O_2 \longrightarrow 2NO_2$ Allow multiples.

- (iii) $4NO_2 + 2H_2O + O_2 \longrightarrow 4HNO_3$ Allow multiples.
- (d) (i) $C_n H_{2n+2}$ Allow $C_x H_{2x+2}$

CnH2n+2 Allow CxH2x+2

(ii) $C_{12}H_{26} \longrightarrow C_6H_{14} + C_6H_{12}$ Only.

> $C_{3}H_{7}$ Only.

1

1

Zeolite / aluminosilicate(s)

(iii) Larger molecule / longer carbon chain / more electrons / larger surface area

More / stronger <u>van der Waals' forces between molecules</u> *Allow dispersion forces / London forces / temporary induced dipole-dipole forces <u>between molecules.</u> If breaking bonds, CE = 0 / 2.*

(e) 2,2,3,3,4,4-hexamethylhexane Only. Ignore punctuation.

Chain

Ignore branch(ed).

(f) Cl₂

Only.

CI–CI

Not CL_2 or Cl2 or CL2 or Cl^2 or CL^2 . Ignore Chlorine.

> 1 [16]

1

1

1

1

1

M3. (a) (i) fractional distillation or fractionation (ii) C_9H_{20} only (iii) $C_{11}H_{24} + 17O_2 \rightarrow 11CO_2 + 12H_2O$ (iv) $C_{11}H_{24} + 6O_2 \rightarrow 11C + 12H_2O$

(i)	$C_{10}H_{22} \rightarrow C_{3}H_{6} + C_{7}H_{16}$	1			
(ii)	correctly drawn structure of methylpropene (insist on clearly drawn C-C and C=C bonds)	1			
Any	ny <u>two</u> from				
0	chemically similar or chemically the same or react in the same way				
0	same functional group				
0	same general formula				
	(ii) Any o	 (ii) correctly drawn structure of methylpropene (insist on clearly drawn C-C and C=C bonds) Any two from o chemically similar or chemically the same or react in the same way o same functional group 			

o differ by CH₂ (penalise same molecular formula or same empirical formula)

 (b) (i) Compound which have the same <u>molecular</u> formula Accept same no and type of atom for M1 But If same (chemical) formula M1 = 0 but allow M2 If empirical formula CE = 0/2

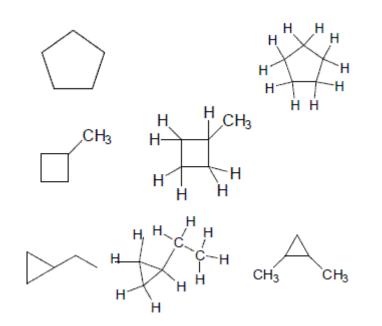
> but different structures/different structural formulae/different displayed formulae *M2 dependent on M1*

1

1

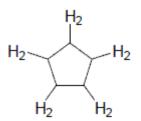
2

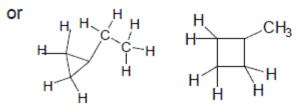
1


[8]

(ii) 3-methylbut-1-ene only ignore commas and hyphens

(iii)


1


1

Allow any correct structure with a cyclic alkane

Do not allow

i.e with an H missing on one C

		Making plastics/used to make polymers or polythene/used to make antifreeze/make ethanol/ripening fruit/any named additional polymer not used as a plastic/polymer/antifreeze not just 'polymers' – we need to see that they are being made 1	
M5. (a)	Fractio	onal distillation / fractionation / GLC / gas liquid chromatography	1
	(b)	C_4H_{10} Need C_4H_{10} and the reason for the mark Because it has a higher bp / has stronger IMF / larger molecule / longer chain / larger surface (area)	1
	(c)	$C_4H_{10} + 6\frac{1}{2}O_2 \longrightarrow 4CO_2 + 5H_2O$ Accept multiples Ignore state symbols	1
	(d)	CO ₂ or H ₂ O evolved is a greenhouse gas / CO ₂ or H ₂ O evolved contribute to global warming / the products are greenhouse gases Ignore climate change	1
	(e)	$CH_3CH_2CH_2CH_3 + 3.5O_2 \longrightarrow C_2H_2(CO)_2O + 4H_2O$ Accept multiples Allow with or without a number 1 before the organic molecules	1

1

[6]

only

- (f) (i) $C_2H_5SH + 4.5O_2 \longrightarrow 2CO_2 + 3H_2O + SO_2$ Accept multiples
 - (ii) Calcium oxide / calcium carbonate Allow any base or alkali Allow correct formulae

Neutralises the SO₂ / acid base reaction / it is a base Can only score M2 if base or alkali used in M1 Allow M2 if blank in M1

(iii) Ethanol contains hydrogen bonding Breaking covalent bonds CE = 0 / 2

> Which is stronger than IMF (VDW / dipole-dipole forces) in ethanethiol / (H bonding) is the strongest IMF Only award M2 if M1 given, but allow IMF in ethanol are stronger than in ethanethiol for maximum 1 mark

1

1

1

1

1

1

- (g) (i) (2,2-)dimethylpropane Ignore punctuation
 - Because molecule is smaller / less polarisable / has less surface (area) / is more spherical / molecules can't get as close to one another (to feel the vdW forces)

Allow converse answers referring to straight chain isomers CE = 0 / 2 if breaking bonds

<u>vdW intermolecular</u> forces or <u>vdW force between molecules</u> are weaker or fewer *Need vdW rather than just IMF*

(iii) 1 or one 1 $C_{\scriptscriptstyle 9}H_{\scriptscriptstyle 20}$ (h) (i) $H_{20}C_9$ 1 (ii) Thermal (cracking) If not thermal cracking CE = 0/21 High pressure AND high temperature If blank mark on Allow high P and T 1 OR Pressure of ≥ 10 atm, ≥ 1 MPa ≥ 1000 kPa AND temp of 400 °C \leq T \leq 1000 °C or 650 K \leq T \leq 1300 K Do not allow high heat If no units for T, then range must be 650 – 1000 1 [17]

1