M1. (a) Single bonds only /no double or multiple bonds;

Contains carbon and hydrogen only;
C and H only
not C and H molecules

Alkanes;
(b) (1) Fractions or hydrocarbons or compounds have different boiling points/ separation depends on bp;

Ignore $m p$ and $v d w$
(2) bp depends on size/ $M_{/} /$chain length;

If refer to bond breaking/cracking/ blast furnace/oxygen/air 2 max
(3) Temp gradient in tower or column / cooler at top of column or vice versa;

QWC
(4) Higher bp / larger or heavier molecules at bottom (of column) or vice versa;

Not increasing size of fraction
Not gases at top
(c) Large molecules or compounds or long chain hydrocarbons (broken) into smaller molecules or compounds or smaller chain hydrocarbons;

QWC

Zeolite or aluminosilicate (catalyst);
$\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{6} \mathrm{H}_{12} ;$
Only

Smaller chain molecules are in more demand or have higher value or vice versa;
(d) $\mathrm{C}_{8} \mathrm{H}_{18}+81 / 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$;

Allow multiples
$\mathrm{Rh} / \mathrm{Pd} / \mathrm{Pt} / \mathrm{lr}$ or in words;
Penalise contradiction of name and symbol
$2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2} / 2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} ;$
Allow multiples

Greenhouse gas/ absorbs infrared radiation;
(e) car less powerful/ car stops/ reduced performance/ won't run smoothly/ can't accelerate;

Not incomplete combustion or bad effect on engine
Not doesn't go as far.

Test it (before sale) /Quality control etc;
(f) (compounds with) same molecular formula / same no and type of atoms;

Not atoms/elements with same molecular formula.
If same chemical formula, can allow M2

And different structure/ structural formula;
M2 consequential on M1
Allow displayed formula for M2

2,2,4-trimethylpentane;

Only (but allow numbers in any order)

M2. (a) Crude oil is heated to vaporise it / oil vaporised (1) (Vapour passed into fractionating) tower / column (1) Top of tower cooler than bottom or negative temperature gradient (1) fractions separated by b.p OR condensed at different temperatures OR levels OR low boiling fractions at the top OR at the top small molecules or light components (1)
$\max 3$
(b) (i) Identify shortfall in supply - e.g. petrol / small molecules (1) Higher value products OR more useful products (1)

OR cracking produces more of material (problem solving)
(ii) Motor fuels

Aromatic hydrocarbons
Branched alkanes / hydrocarbons
Cycloalkanes
Any two (2)
Ignore specific fractions, alkanes, shorter alkanes, penalise alkenes, and hydrogen
(c) Catalyst: Zeolite / aluminosilicate (1)

Type of mechanism: Carbocation / heterolytic fission (1)
Conditions: High temp OR around $450{ }^{\circ} \mathrm{C}[300-600]^{\circ} \mathrm{C}$ NOT heat / warm (1)
Slight pressure [> $1 \mathrm{~atm} \leq 10 \mathrm{~atm}$ OR 1 megaPa, 1000 kPa (1)
NOT high pressure

M3. (a) Missing fraction = naphtha (allow naphtha from list if not quoted separately) (1) Order = mineral oil (lubricating oil), gas oil (diesel),
kerosene (paraffin), naphtha, petrol (gasoline) (1)

Mark order consequential on M1 (if no missing fraction given, M2 = 0) Accept correct reversed order

Negative temperature gradient on the column
or temperature of column decreases upwards (1)
Larger molecules or heavier fractions condense at higher temperatures or lower down the column or reference to different boiling points
(ignore mp) (1)
(b) Type of mechanism = (free) radical / homolytic fission - used in complete sentence/phrase (1)
$\mathrm{C}_{21} \mathrm{H}_{44} \rightarrow 3 \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{9} \mathrm{H}_{20}$ correct alkenes (1) Accept $\mathrm{CH}_{2} \mathrm{CH}_{2} \& \mathrm{CH}_{2} \mathrm{CHCH}_{3}$ all correct (1)
(c) (i) Sulphur (containing impurities) burn to form or forms SO_{2} or oxides of sulphur (if oxide identified, must be correct) (1) OR equation: e.g. $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$ or $\mathrm{H}_{2} \mathrm{~S}+1 \frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Leading to acid rain (must have specified oxides of S or burning) or toxic product or respiratory problems (1)
(ii) NO formed by reaction between N_{2} and O_{2} from the air (1) $\mathrm{OR} \mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
High combustion temperature or spark in engine (1) provides E_{A} or sufficient heat / energy to break $N \equiv N$ (1)
(iii) Need to remove NO as forms acid rain or toxic product or causes respiratory problems (1)
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ (1)
$4 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HNO}_{3}(1)$
Need to remove CO as it is poisonous (1)
Catalytic converter (1) uses Pt / Rh / Pd / Ir (wrong answer cancels a correct one) (1)
Provides active sites / reduces $\mathrm{E}_{\mathrm{A}}(1)$
Forms $\mathrm{N}_{2}+\mathrm{CO}_{2}$ (1)
$2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$ (correct equation worth last 2 marks) (1)

M4. (a) (i) any two from: show a gradation/trend/gradual change in physical properties/ a specified property differ by CH_{2} chemically similar or react in the same way have the same functional group
(penalise 'same molecular formula')
(penalise 'same empirical formula')
(ii) fractional distillation or fractionation
(iii) contains only single bonds or has no double bonds
(credit 'every carbon is bonded to four other atoms' provided it does not contradict by suggesting that this will always be H)
(b) (i) the molecular formula gives the actual number of atoms of each element/type in a molecule/hydrocarbon/compound/formula (penalise 'amount of atoms')
(penalise 'ratio of atoms')
(ii) $\mathrm{C}_{14} \mathrm{H}_{30}$ only
(penalise as a contradiction if correct answer is accompanied by other structural formulae)
(iii) $\mathrm{C}_{10} \mathrm{H}_{22}+5 \frac{1}{2} \mathrm{O}_{2} \rightarrow 10 \mathrm{C}+11 \mathrm{H}_{2} \mathrm{O}$
(or double this equation)
(c) (i) $1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}$
(or double this equation)
(ii) Platinum or palladium or rhodium
(iii) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ or
$2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$ or
(ignore extra O_{2} molecules provided the equation balances)

$$
\begin{aligned}
& \mathrm{C}+2 \mathrm{NO} \rightarrow \mathrm{CO}_{2}+\mathrm{N}_{2} \\
& \quad \text { (or half of each of these equations) } \\
& \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+121 / 2 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O} \\
& \quad \text { (or double this equation) }
\end{aligned}
$$

