M1. (a)	<u>Enthal</u> cond	<u>by change</u> when <u>1 mol</u> of an (ionic) compound/lattice (under standard litions)
		Allow heat energy change 1
		Is dissociated/broken/separated into its (component) ions
		The ions being in the <u>gaseous</u> state (at infinite separation) <i>Mark independently. Ignore any conditions.</i> 1
	(b)	There is an <u>attractive</u> force between the <u>nucleus</u> of an O atom and an external <u>electron.</u> Allow any statement that implies attraction between the nucleus and an electron
	(c)	Mg²⁺(g) + O(g) + 2e⁻ Ignore lack of state symbols Penalise incorrect state symbols 1
		Mg²⁺(g) + O⁻(g) + e⁻ 1
		Mg²+(g) + O²-(g)
		First new level for Mg² and O above last on L If levels are not correct allow if steps are in correct order with arrows in the correct direction and correct ∆H values 1

Next level for Mg²⁺ and O⁻ below that

Next level for Mg²⁺ and O²⁻ above that and also above that for Mg²⁺ and O Allow +124 Allow M4 with incorrect number of electrons

(d) LE MgO = 602 + 150 + 736 + 1450 + 248 - 142 + 844 Note use of 124 instead of 248 CE=0

1

= +3888 kJ mol[₋]1 Allow 1 for –3888 Allow no units Penalise wrong units

(e) Forms a protective layer/barrier of MgO / MgO prevents oxygen attacking Mg Allow activation energy is (very) high Allow reaction (very) slow

1

1

1

1

1

(f)
$$\Delta G = \Delta H - T \Delta S$$

 $\Delta S = (\Delta H - \Delta G)$ T

 $\Delta S = (-602 - (-570)) \times 1000/298$

 (g) 1 mol of solid and 0.5 mol of gas reactants form 1 mol solid products Decrease in number of moles (of gas/species) Allow gas converted into solid System becomes more ordered Allow consequential provided ΔS is –ve in 1(f) If ΔS is +ve in 1(f) can only score M1

[16]

1

1

1

1

1

1

1

M2. (a) $KNO_3(s) \rightarrow K^{\uparrow}(aq) + NO_3^{\neg}(aq)$ do not allow equations

do not allow equations with H₂O allow aq and the word 'water' in equation

- (b) increase in disorder because solid → solution / increase in number of particles / 1 mol (solid) gives 2 mol (ions/particles) / particles are more mobile
 - allow random or chaos instead of disorder penalise if molecules/atoms stated instead of ions allow any reference to increase in number of particles even if number of particles wrong
- (c) $\Delta G = \Delta H T\Delta S / T = \Delta H / \Delta S$

$T = \Delta H / \Delta S = (34.9 \times 1000) / 117$ also scores M1

= 298 <u>K</u>

correct answer scores 3, units essential 0.298 scores M1 only

(d) (i) positive / increases / $\Delta G > 0$ Allow more positive

1

		(ii)	if ans to (d) (i) positive, dissolving is no longer spontaneous / no longer feasible / potassium nitrate does not dissolve / less soluble	
			if ans to (d) (i) negative, dissolving is spontaneous / feasible / potassium nitrate dissolves / more soluble	
			If no mention of change to ΔG in (d)(i),	
			Mark = 0 for (d)(ii)	1
				1
M3.		(a)	(i) $\Delta H = \Sigma$ bonds broken $-\Sigma$ bonds formed	
		()		1
			$= 944/2 + 3/2 \times 436 - 3 \times 388$	
			- 344/2 : 0/2 : 400 0 : 000	1
			$= -38 (k \mid mol^{-1})$	
			ignore units even if incorrect	
			correct answer scores 3	
			-76 scores $2/3$	
			+38 scores 1/3	
				1
		(ii)	mean / average bond enthalpies are from a range	
		()	of compounds	
			Or maan / average hand anthelping differ from these in	
			a single compound / ammonia	
				1
	(b)	ΔS	$S = \Sigma S$ products $-\Sigma S$ reactants	
	()			1
		= 19	93 – (192/2 + 131 × 3/2)	
				1
		= _0	99 5 J K-1 mol-1	
		:	units essential for M3	
			correct answer with units scores 3	
			$-199 \text{ J K}^{-1} \text{ mol}^{-1} \& -99.5 \text{ score } 2/3$	

[7]

Page 5

(c)	(i)	$\Delta G = \Delta H - T\Delta S = -46 + 800 \times 99.5/1000$ mark is for putting in numbers with 1000 if factor of 1000 used incorrectly CE = 0	1
		= 33.6 or 33600	
		allow 33 to 34 (or 33000 to 34000)	1
		kJ mol⁻¹ with J mol⁻¹ correct units for answer essential if answer to part (b) is wrong or if -112 used, mark consequentially e.g.	
		 –199 gives 113 to 114 kJ mol⁻¹ (scores 3/3) –112 gives 43 to 44 kJ mol⁻¹ (scores 3/3) 	1

(ii) If answer to (c) (i) is positive: not feasible / not spontaneous

If answer to (c) (i) is negative: feasible / spontaneous if no answer to (c) (i) award zero marks

1

1

M4.	(a)	Particles are in maximum state of order	
		(or perfect order or completely ordered or perfect crystal or minimum disorder or no disorder)	
		(entropy is zero at 0 k by definition)	
			1

(b) (Ice) melts

(or freezes or changes from solid to liquid or from liquid to solid)

()			1
	Bigg	er (at T_2)	
		Second mark only given if first mark has been awarded	1
(d)	(i)	Moles of water = 1.53/18 (= 0.085)	1
		Heat change per mole = 3.49/0.085 = 41.1 (kJ mol ^{_1}) (allow 41 to 41.1, two sig. figs.)	
		(penalise –41 (negative value), also penalise wrong units but allow kJ only)	
			1
	(ii)	$\Delta G = \Delta H - T \Delta S$	1
	(iii)	$\Delta H = T \Delta S$ or $\Delta S = \Delta H/T$	
	()	(penalise if contradiction)	1
		∆S = 41.1/373 = 0.110 kJ K⁻¹ (mol⁻¹) (or 110 (J K⁻¹ (mol⁻¹)) (allow 2 sig. figs.)	
		(if use value given of 45, answer is 0.12 (or 120 to 121)	
		(if ΔH is negative in (d) (i), allow negative answer) (if ΔH is negative in (d) (i), allow positive answer)	
		(if ΔH is positive in (d) (i), penalise negative answer)	1
		Correct units as above (mol ⁻¹ not essential)	1

[10]

M5.	(a) Because it is a <u>gas</u> compared with <u>solid</u> carbon <i>Mark independently</i>			
			1	
	Nitro	ogen is more disordered/random/chaotic/free to move		
			1	

(c)
$$\Delta G = \Delta H - T\Delta S$$

 $Allow \Delta H = \Delta G - T\Delta S$
 $T\Delta S = \Delta H - \Delta G$
 $\Delta S = (\Delta H - \Delta G)/T$
 $Ignore \ in \ \Delta G^{\circ}$

1

1

(d) ΔG is less than or equal to zero ($\Delta G \le 0$) Allow ΔG is less than zero ($\Delta G < 0$) Allow ΔG is equal to zero ($\Delta G = 0$) Allow ΔG is negative

1

(e) When
$$\Delta G = 0$$
 $T = \underline{\Delta H / \Delta S}$
 $\Delta H = +90.4$
 $A / low \Delta H = +90$
 $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$
 $\Delta S = 211.1 - 205.3/2 - 192.2/2 = \underline{12.35}$
 $T = (90.4 \times 1000)/12.35 = 7320 \text{ K}/7319.8 \text{ K}$
 $A / low 7230 \text{ to } 7350 \text{ K} (Note 7.32 \text{ K scores 4 marks})$
Units of temperature essential to score the mark
1
(f) Activation energy is high

Allow chemical explanation of activation energy Allow needs route with lower activation energy Allow catalyst lowers activation energy

(g) $\Delta H = 1.9 (\text{kJ mol}^{-1})$

1

1

$\Delta S = 2.4 - 5.7 = -3.3$ (J K ⁻¹ mol ⁻¹) for M1 and M2 allow no units, penalise wrong units	1	
ΔG is always positive		
This mark can only be scored if ΔH is +ve and ΔS is –ve	1	[14]