M1.B

M2.C

M3.B

[1]

[1]

M4. $\Delta H = \Sigma \Delta H_{f}(\text{products}) - \Sigma \Delta H_{f}(\text{reactants})$ (a) 1 = -201 - 242 - (-394)1 = -49 kJ mol⁻¹ +49 kJ mol⁻¹ = 1 mark units not required, wrong units lose 1 mark 1 $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$ (b) 1 $= 238 + 189 - (214 + 3 \times 131)$ 1 = -180 J K⁻¹ mol⁻¹ +180 = 1 mark units not required, wrong units lose 1 mark 1 $\Delta G = \Delta H - T \Delta S$ (c) If use G not ΔG penalise M1 but not M2 and M3 1

(ΔS is negative so) at high temp $-T\Delta S$ (is positive and) greater than ΔH /large

1

	So ΔG > 0					
	Independent mark unless positive ΔS value used	1				
	(Limiting condition $\Delta G = 0$ so) $T = \Delta H / \Delta S$					
	= 272 K Allow 297-298 if used given values. Do not award M5 if T –ve or if M4 should give T –ve	1				
	Reaction is too slow at this temperature/to speed up the reaction	1				
(d)	$\begin{array}{l} CH_3OH+3/2O_2\toCO_2+2H_2O\\ & \text{Allow multiples.}\\ & \text{Ignore state symbols.}\\ & \text{Do not allow equation for wrong compound but mark on}\\ & \text{provided number of moles increases or stays the same.}\\ & \text{If no equation or equation that gives a decrease in the}\\ & \text{number of moles,}\\ & \text{CE}=0 \end{array}$	1				
	2.5 mol give 3 mol (gases) Allow statement 'increase in number of moles/molecules' If numerical values given, they must match the equation in M1 Ignore the effect of incorrect state symbols on the number of moles of particles unless used correctly	1				
	Therefore ΔS is positive/entropy increases If correct deduction from wrong equation is $\Delta S = 0$ or ΔS very small must say H -ve	1				
	(combustion exothermic so ΔH –ve so ΔH – $T\Delta S$) and hence ΔG always negative (less than zero) Allow G instead of ΔG Can score 3 out of 4 marks if equation wrong but leads to increase or no change in number of moles M4 dependent on M3 Note, if equation wrong AND there is an incorrect deduction about the change in number of moles $CE = 0$	1				

(e) CO₂/CO/CH₄ may be produced during H₂ manufacture/building the plant/transport/operating the plant

[17]

1

M5.

(a) Standard enthalpy change, ΔH^{Θ} : $\Delta H_{R} = \Sigma \Delta H_{fproducts} - \Sigma \Delta H_{freactants}$ (1) or cycle

$$\Delta H_{R} = (0 + [2 \times -242]) - (4 \times -92) (1)$$

= -484 + 368
= -116 (kJ mol⁻¹)
Allow max 1 for +116

Standard entropy change, ΔS^{\oplus} : $\Delta S = \Sigma \Delta H_{f \text{ products}} - \Sigma \Delta H_{f \text{ reactants}}$

 $\Delta S = ([2 \times 223] + [2 \times 189]) - (205 + [4 \times 187]) (1)$

= 824 – 953

6

7

- (b) (i) Effect: Equilibrium displaced to right / to products (1) Explanation: Reaction is endothermic (1) Constraint reduced (1) mark separately
 - (ii) Feasible when $\Delta G \leq 0$ (1)

 $\Delta G = \Delta H - T\Delta S (1)$

 $T = \Delta H / \Delta S = 208 \times 1000$ (1) / 253

= 822 K **(1)**

[13]

M7.		(a)	(i)	1s² 2s² 2pº 3s² 3pº	1
		(ii)	The	e negative S [_] ion bels the added electron	1
		(iii)	Ste Ste	ep B is the atomisation enthalpy of sulphur ep D is the second ionisation enthalpy of calcium	1
		(iv)	Ele Eleo mor	ectrons nearer to the nucleus ectrons removed from a positive species or ore strongly attracted	1
		(v)	+17 G +	78 +279 +590 +1145 -200 + 539 + G + 482 = 0 + 3013 = 0 hence G = –3013	1
	(b)	The The stroi	The model used assumes the ions are spherical and in a lattice he calculated value is smaller than the cycle value or tronger attraction		1
		Ind	icatin	ng some covalent character or ions are polarised	-

(c)	(i)	For a reaction to occur $\Delta G < 0$	1	
		ΔS is positive and large as a gas is evolved	1	
		T ΔS is larger than ΔH and ΔG is negative	1	
	(ii)	ΔS is negative	1	
		Four moles gaseous reactant forming or more moles of gaseous product	1	
		At high temperature T ΔS is larger than ΔH and ΔG is positive	1	[18]

M8.C

[1]

M9.C

[1]