M1.D

M2.(a) (i) $1.6734 \times 10^{24}(\mathrm{~g})$
Only.
$1.6734 \times 10^{27} \mathrm{~kg}$
Not $1.67 \times 10^{24}(\mathrm{~g})$.
(ii) B
(b) (i) $\frac{10 x+11 y}{x+y}=10.8$

OR ratio 10:11 = 1:4 OR 20:80 etc
Allow idea that there are 5×0.2 divisions between 10 and 11.
abundance of ${ }^{10} \mathrm{~B}$ is $\underline{20}(\%)$
OR
$\frac{10 x}{100}+\frac{11(100-x)}{100}=10.8$
$10 x+1100-11 x=1080$
$\therefore \mathrm{x}=1100-1080=20 \%$
Correct answer scores M1 and M2.
(ii) Same number of electrons (in outer shell or orbital) Ignore electrons determine chemical properties.

Same electronic configuration / arrangement
(c) Range between 3500 and $10000 \mathrm{~kJ} \mathrm{~mol}^{1}$
(d) $\mathrm{B}^{+}(\mathrm{g}) \longrightarrow \mathrm{B}^{2+}(\mathrm{g})+\mathrm{e}^{()}$
$\mathrm{B}^{+}(\mathrm{g})-\mathrm{e}^{()} \longrightarrow \mathrm{B}^{2+}(\mathrm{g})$
$\mathrm{B}^{+}(\mathrm{g})+\mathrm{e}^{()} \longrightarrow \mathrm{B}^{2+}(\mathrm{g})+2 \mathrm{e}^{()}$
Ignore state symbol on electron even if wrong.
(e) Electron being removed from a positive ion (therefore needs more energy)/ electron being removed is closer to the nucleus

Must imply removal of an electron.
Allow electron removed from a + particle / species or from a 2+ ion.
Not electron removed from a higher / lower energy level/ shell.
Not electron removed from a higher energy sub-level / orbital.
Ignore electron removed from a lower energy sub-level / orbital.
Ignore 'more protons than electrons'.
Not 'greater nuclear charge'.
Ignore 'greater effective nuclear charge'.
Ignore shielding.

M3. (a)

Particle	Relative Charge	Relative mass
Proton	+1	1
Neutron	0	1

Need +1 for proton
(b) d block/ D block;

Or Dord
(c) (i) 74 ;
(ii) 112;

Not 112.0

Not 74.0

(d) (i) To accelerate/ make go faster;

To deflect/ to bend the beam;
Any order
Not just attract to negative plate
(ii) Electromagnet / magnet / electric field /accelerating potential or voltage;

Not electric current
Not electronic field
(e) None/ nothing;

If blank mark on.
If incorrect $C E=0$

Same number of electrons (in outer orbital/shell)/ both have 74 electrons/same electron configuration;

Not just electrons determine chemical properties Ignore protons and neutrons unless wrong statement.
(f) $\frac{(182 \times 26.4)+(183 \times 14.3)+(184 \times 30.7)+(186 \times 28.6)}{100}$;

If transcription error then

M1 $=A E=-1$ and mark
M2 consequentially
= 183.90; allow range from 183.90-184.00;

M4. (a) Number of protons in the nucleus
(b) They may have different numbers of neutrons
(c) (i) Mass spectrometer
(ii) $\frac{\text { Mean mass of an atom }}{\text { Mass of } 1 \text { atom of }{ }^{12} \mathrm{C}} \times 12$
(iii) $A_{t}=\frac{\text { sumof relative } m / z \times \text { rel. abundance }}{\text { Total abundance }}$

$$
=(82 \times 12+83 \times 12+84 \times 50+86 \times 26) / 100=84.16
$$

(d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{\circ} 4 p^{6}$
(e) Krypton was thought to be an inert gas (or has 8 electrons in outer shell)
(f) (i) Krypton has more protons than bromine

But its outer electrons are in the same shell (or have similar shielding)
(ii) Al electron is in a $3 p$ orbital, magnesium in 3 s

Energy of $3 p$ is greater than $3 s$

M5. (penalty for sig fig error =1 mark per question)
(a) neutron: relative mass $=1$ relative charge $=0$ (not 'neutral')
electron: relative mass $=1 / 1800 \rightarrow 0 /$ negligible or
$5.56 \times 10-4 \rightarrow 0$ relative charge $=-1$
(b) ${ }^{1} \mathrm{O} / \mathrm{O}^{\prime}$ mass number (Do not accept 17.0)
oxygen symbol ' O '
(if 'oxygen' + - 'mass number = 17'(1))
(if 'oxygen'+ - 'mass number $=17$ '(0))
(if at N° given but $\neq 8$, treat as 'con' for $M 2$)
(if Ip on Be, diagram $=0$)
(ignore bond angles)
(not dot and cross diagrams)
(c)

> QoL Linear (1) bent / V-shaped / angular (1) $$
\begin{array}{l}\text { (mark name and shape independently) } \\ \text { (accept (distorted) tetrahedral) } \\ \text { (if balls instead of symbols, lose M1 - can award M2) } \\ \text { (penalise missing 'Cl’ once only) } \\ \text { (not 'non-linear') }\end{array}
$$

(d) $\quad M_{\mathrm{r}}\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=58(.3)\right.$ (if At N^{0} used, lose $M 1$ and $M 2$)

```
moles Mg(OH)2 = 0.0172 (conseq on wrong M2) (answer to 3+ s.f.)
moles HCl = 2 < 0.0172 = 0.0344 or 0.0343 (mol) (process mark)
vol HCl = \frac{0.0343\times1000}{1}=34.3-34.5(\mp@subsup{\textrm{cm}}{}{3})\mathrm{ (unless wrong unit)}
    (if candidate used 0.017 or 0.0171 lose M2)
    (just answer with no working, if in range = (4).
    if, say, 34 then =(2))
    (if not 2:1 ratio, lose M3 and M4)
    (if work on HCl, CE = 0/4)
```

