	bromide	1
	R is aluminium	1
	chloride	1
	S is iron(III)	1
	sulfate Mark this question independently	1
(b)	$Ba^{2*} + SO_4^{2-} \longrightarrow BaSO_4$	1
	$[Fe(H_2O)_6]^{3+} + 3OH^{-} \xrightarrow{\longrightarrow} Fe(H_2O)_3(OH)_3 + 3H_2O$	1

1

1

1

$$[\mathsf{Fe}(\mathsf{H}_2\mathsf{O})_6]^{3+} + 4\mathsf{C}^{-} \longrightarrow [\mathsf{Fe}\mathsf{C}\mathsf{I}_4]^{-} + 6\mathsf{H}_2\mathsf{O}$$

OR (used to absorb) X-rays

Credit a correct reference to **M1** written in the explanation in **M2** unless contradictory.

M2 BaSO₄ / barium sulfate / it is insoluble

For **M2** penalise obvious reference to barium or to barium ions being insoluble.

2

(b) $Mg(OH)_2 + 2HCI \longrightarrow MgCl_2 + 2H_2O$ *Or multiples. Ignore state symbols.*

1

 (c) It / magnesium hydroxide is insoluble / insufficiently soluble / sparingly soluble / less soluble than barium hydroxide / forms low concentration solutions Weak alkali alone is insufficient. Formation of a precipitate needs explanation.

(d) $TiCl_4$ + 2Mg \longrightarrow 2MgCl₂ + Ti Or multiples. Ignore state symbols.

1

1

(e) **M1** Hydrogen / H₂ produced

OR an equation to produce <u>hydrogen / H₂</u>

 $(eg Mg + 2H_2O \longrightarrow Mg(OH)_2 + H_2)$

(eg Mg + H₂O → MgO + H₂)
For M1
Do not penalise an incorrect equation; the mark is for H₂ or
hydrogen.
Award one mark only for 'exothermic reaction with steam /

H₂O' for a student who has not scored **M1**

M2 requires correct M1

risk of explosion

OR forms explosive mixture (with air)

OR (highly) flammable

Ignore 'violent' reaction.

M3.(a) (Measure the) volume of gas / mass of the container + contents

Suitable named piece of equipment

Gas syringe (or inverted burette or measuring cylinder, as long as student has referred to the cylinder being filled with water) / balance.

Equipment must be correct for the measurement stated.

(b) Any **one** of:

- Mass of magnesium Allow amount of magnesium.
- Surface area of magnesium

1

2

1

1

[7]

(c) (i) Gravity: Conical flask or beaker and funnel /

Vacuum: Sealed container with a side arm and Buchner or Hirsch funnel Must be either gravity filtration (with a V-shaped funnel) or vacuum filtration (with a side-arm conical flask) appropriately drawn.

1

Filter paper

Must show filter paper as at least two sides of a triangle

(V-shaped) for gravity filtration or horizontal filter paper for vacuum filtration. 1 (ii) Wash with / add (a small amount of cold) water Ignore filtering. 1 [6] **M4.**(a) (i) 1.08 × 10⁻² Do not penalise precision but must be to at least 2 significant figures. Do not accept 1×10^{-2} 1 5.4(0) × 10⁻³ (ii) Allow (i) / 2 Do not penalise precision but must be to at least 2 significant figures. 1 (iii) 266.6 Lose this mark if answer not given to 1 decimal place. 1 mass = 5.4(0) × 10⁻³ × 266.6 = 1.44 g M1 (iv) Allow (ii) × (iii). 1 percentage = 1.44 × 100 / 2.25 = 64.0 M2 Allow consequential answer from M1 Lose this mark if answer not given to 3 significant figures. Correct answer with no working scores **M2** only. 1

(v) 1 Would give an <u>incorrect / too large mass</u> (of silver chloride)

1

1

1

1

1

<u>To remove soluble impurities</u> / <u>excess silver nitrate</u> (solution) / <u>strontium nitrate</u> (solution)
 Do not allow 'to remove impurities'.
 Do not allow 'to remove excess strontium chloride solution'.

 (b) (i) Mg²⁺(aq) + 2OH (aq) → Mg(OH)₂(s) Allow Mg²⁺(aq) + 2OH (aq) → Mg²⁺(OH)₂(s) Allow multiples, including fractions. Lose mark if state symbols are missing or incorrect. Lose mark if incorrect charge on an ion.

(ii) Does not produce CO₂ / gas which distends stomach / does not produce wind / does not increase pressure in stomach
 Allow 'prevents flatulence' and 'prevents burping'.
 Do not allow 'gas' without qualification.

(c) $(CH_3COO)_2Ca \rightarrow CH_3COCH_3 + CaCO_3$ Allow multiples. Allow propanone as C_3H_6O Allow $(CH_3COO')_2Ca^{2+} \rightarrow CH_3COCH_3 + Ca^{2+}CO_3^{2-}$

(d) Ca (salt) - no visible change with sodium chromate(VI) M1
 Allow 'yellow solution formed' or 'no ppt. forms'.
 Allow M1 and M2 in any order.

Sr and Ba (salts) give (yellow) <u>precipitate</u> with sodium chromate(VI) **M2** Lose this mark if precipitate has an incorrect colour.

1

1

Sr precipitate (chromate(VI)) dissolves in ethanoic acid / Ba precipitate (chromate(VI)) does not dissolve in ethanoic acid M3 If ethanoic acid is added first, allow access to M1 and M3 .	1
 (e) C 42.09 / 12, H 2.92 / 1, N 8.18 / 14, O 37.42 / 16 and S 9.39 / 32.1 Accept any other correct method of working. If relative atomic mass has been divided by the percentage composition is used then CE = 0 / 2 	1
$C_{12}H_{10}N_2O_8S$ Correct answer with no working scores 1 mark only.	1 [15]
M5.(a) (i) SrCl₂(aq) + Na₂SO₄(aq) → SrSO₄(s) + 2NaCl(aq) Allow multiples, including fractions. Allow ionic equations. Lose this mark if any of the state symbols are missing or incorrect.	1
 (ii) Add nitric acid to the mixture (until in excess) Do not allow any suggestion that the solution is an emetic. 	1
Filter (to isolate strontium sulfate)	1
(b) <u>Insoluble barium sulfate</u> is formed Allow <u>'removes barium ions as a precipitate'</u> .	1
(c) Add silver nitrate, <u>then dilute ammonia</u> (solution) M1 Do not allow answers which imply silver nitrate and ammonia	

are added at the same time. Allow 'add silver nitrate, then concentrated ammonia (solution)'. Can score **M1** in the answer for **M3**

Cream precipitate **M2** Allow 'off white precipitate'.

No visible change or precipitate dissolves slightly in dilute ammonia **M3** Allow 'soluble / colourless solution / precipitate dissolves in concentrated ammonia'. Allow 3 marks for: Add dilute ammonia (solution), then silver nitrate **M1** No visible change **M2** Cream / off white precipitate with silver nitrate **M3**

1

1

1