M1. (a) M1 The yield of zinc oxide increases/greater If M1 is given as "decrease" OR "no effect" then CE=0

M2 Removal of the carbon dioxide results in the equilibrium
Either
Shifting/moving/goes to the right
shifting/moving/goes L to R
favours the forward reaction/towards the products
M3 (By Le Chatelier's principle) the reaction/equilibrium will respond so as to replace the $\mathrm{CO}_{2} /$ lost product
OR to make more CO_{2}
OR to increase concentration of CO_{2}
For M3, not simply "to oppose the change/to oppose the loss of CO_{2} /to oppose the removal of carbon dioxide."
(b) M1 Process 2 produces/releases SO_{2}

OR Process 2 produces/releases CO
M2 It/Process 3 avoids the release of $\mathrm{SO}_{2} \mathrm{OR} \mathrm{CO}$ ORIt/Process 3 (captures and) converts SO_{2} to $\mathrm{H}_{2} \mathrm{SO}_{4}$

M3 SO_{2} causes acid rain OR is toxic/poisonous ORCO is toxic/poisonous

Ignore "global warming" and "greenhouse gases" and "the ozone layer"
If both CO and SO_{2} claimed to form acid rain, treat as contradiction
(c) M1 Process 3 (is expensive because it) uses electrolysis

OR due to high electricity/electrical consumption
M2 this is justified because the product/zinc is pure
Ignore "energy"
Penalise "purer"
(d) M1 $\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}$

Ignore state symbols
M2 the negative electrode OR the cathode

Ignore absence of negative charge on electron
Accept electrons subtracted from RHS
(e) M1 The reaction of ZnO with sulfuric acid OR the second reaction in Extraction process 3

M2 neutralisation or acid-base
OR alternatively
M1 The reaction of zinc carbonate in Extraction process 1
M1 could be the equation written out in both cases
M2 (thermal) decomposition
M2 depends on correct M1
M3 It/carbon is oxidised/gains oxygen/changes oxidation state/number from 0 to +2 /increase in oxidation state/number in Process 2

Do not forget to award this mark
Ignore reference to electron loss but penalise electron gain Ignore "carbon is a reducing agent"
(f) $\quad \mathrm{M} 1 \quad \mathrm{Zn}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{ZnO}+\mathrm{H}_{2}$

M2 Zinc oxide and hydrogen
OR as an alternative
M1 $\mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
M2 Zinc hydroxide and hydrogen
Mark independently
If ZnO_{2} is given for zinc oxide in the equation, penalise M1 and mark on
If ZnOH is given for zinc hydroxide in the equation, penalise M1 and mark on
Ignore state symbols
Credit multiples of the equation
If M1 is blank, either of the M2 answers could score
To gain both marks, the names must match the correct equation given.

M2. (a) Antacid

OR

to neutralise acidity

OR

eases indigestion
Credit suitable reference to indigestion or to laxative or to relief of constipation
(b) M1 Decrease in T decreases the energy of the particles/ions $/ \mathrm{H}^{+} /$molecules

M2 (also scores M1) Decrease in the number of/less particles/ions/ $\mathrm{H}^{+} /$molecules with $\mathrm{E} \geq \mathrm{E}_{\text {Ad }}$ or $\mathrm{E} \geq$ minimum energy to react

In M1 and M2, credit "atoms" but ignore "calcium carbonate", ignore "calcium", ignore any ion formula except H^{+}

M3 Few(er)/Less effective/productive/successful collisions
QoL
(c) (i) Strontium has a higher melting point than barium, because

Correct reference to size of cations/proximity of electrons M1 (For Sr) delocalised electrons closer to cations/positive ions/atoms/nucleus

OR

cations/positive ions/atoms are smaller

OR

cation/positive ion/atom or it has fewer (electron) shells/levels Ignore general Group 2 statements
Penalise M1 if Sr or Ba is said to have more or less delocalised electrons
Ignore reference to shielding
CE $=\mathbf{0}$ for reference to molecules or intermolecular forces or covalent bonds

Relative strength of metallic bonding

M2 (Sr) has stronger attraction between the cations/positive ions/ atoms/nucleus and the delocalised electrons

OR

stronger metallic bonding
(assume argument refers to Sr but accept converse argument for Ba$) 2$
Ignore "Van der Waals forces (between atoms)" but penalise if "between molecules"
(ii) $\mathrm{Sr}+\mathbf{2 H}_{2} \mathrm{O} \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2}$

Or multiples
(d) $\mathbf{2 M g}+\mathrm{TiCl}_{4} \rightarrow \mathbf{2} \mathrm{MgCl}_{2}+\mathrm{Ti}$

Or multiples

M3.(a) Fractional distillation (under reduced pressure)
(b) BaSO_{4} insoluble / remove by filtration

Do not allow answers which refer to reaction rate
(c) Both contain OH group

Allow OH stretch in ir spectrum of each compound
Do not allow 'same bonds'

M4.(a) Correct completion of table
(7.2-9.4-10.3-11.5-12.2-13.1)

Any error loses the mark.

Appropriate scales for axes
No penalty for missing labels but the graph must cover at least half of the available area.

All points plotted correctly
Allow ± 1 small square.

Line of best fit acceptable
Must be a reasonably smooth curve but make allowance for freehand drawing passing within one small square of each point.
Do not penalise minor doubling of line.
(b) Maximum mass at $(44.0 / 4)=11.0 \mathrm{~g}$ giving a max. pressure of $1.7 \pm 0.1 \mathrm{MPa}$

Allow this pressure range only.
Check that candidate's answer matches graph.
(c) 7.2 g of NaCl in $250 \mathrm{~cm}^{3}$ represents $28.8 \mathrm{~g} \mathrm{dm}^{-3}$

Allow 0.49 but not 0.5 ; otherwise do not penalise precision of answer

Molarity $=0.492 \mathrm{~mol} \mathrm{dm}^{-3}$
Conseq. to their graph value for 100 kPa to 2 or 3 sig .
(d) Measuring cylinder $=(1 / 250) \times 100=0.4 \%$

Balance $=(0.1 / 7.2) \times 100=1.4 \%$
Both values correct for the first mark.
Balance error conseq. on their 100 kPa mass value.
Ignore precision of answers.

Combined error 1.8\%
When error being calculated is not stated, allow if the calculations are in the same order as in the question (measuring cylinder, balance).
If only combined error given then 1 mark only.
(e) (i) The points are good enough to be able to draw a smooth curve because the line passes through / close to all points.

Mark consequentially on candidate's graph
(ii) There are no anomalous points

Mark consequentially on candidate's graph
(f) The experiment only seeks an approximate figure for the maximum pressure Allow words to that effect.
(g) (i) Toxic (to marine life)

Allow phrasing which implies a detrimental effect on marine ecology.
(ii) Mixing the effluent with (sea) water to dilute it Penalise any method which removes the salt or which implies storage.
(h) $2 \mathrm{Br}^{-}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}$

Allow NaBr or KBr
(i) The cost of removing water / heating would be too high Discount answers based on toxicity or speed of reaction. Allow answers based on cost of using sulfuric acid.
(j) (i) Carbon

Allow C, soot, graphite, coal.
(ii) Formed by the decomposition of organic material / living organisms in the sea water

Allow 'erosion of coal beds'.
(iii) Dissolve the solid formed in water

Do not allow melting of the solid.

Filter off the insoluble particles
(k) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Allow $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
Allow multiples.
(I) In agriculture / to raise the pH of soil / (Lime-based) mortars in construction Allow words to that effect.

