M1. (a) $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$

$$
\begin{array}{r}
\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\text { Allow ionic equations }
\end{array}
$$

$$
\begin{array}{ll}
\text { Measurements } & \text { (i) } \mathrm{P} 1 \\
& \text { (ii) } \mathrm{T} 1 \\
& \text { (iii) } \vee 1
\end{array}
$$

Use ideal gas equation to calculate mol hydrogen or mass/Mr Mol $\mathrm{H}_{2}=\mathrm{mol} \mathrm{Mg}$ (Mark consequentially to equation)
(c) $\mathrm{MgCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NaCl}$ Species

Balanced
Allow an ionic equation
$\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O}$
(d) Allow 2 significant figures in these calculations and ignore additional figures

EITHER

Mol MgO obtained stage $2=$ mass $\mathrm{MgO} / \mathrm{MrMgO}$
$=6.41 / 40 .(3) \quad=0.159$ Allow 0.16
Allow method mark if formula of magnesium oxide or M_{r} incorrect

Moles of $\mathrm{Mg}=$ moles of H_{2} hence
Mol original $\mathrm{MgO}=\mathrm{mol} \mathrm{MgO}$ from stage $2-\mathrm{mol} \mathrm{H}_{2}$

$$
=0.159-0.0528=0.106 \text { Allow } 0.11
$$

Mark consequentially to moles of magnesium oxide determined above

OR
Mass MgO formed from $\mathrm{Mg}=0.0528 \times \mathrm{M}_{\mathrm{r}} \mathrm{MgO}$ \{or 40.(3) \}
$=2.13 \mathrm{~g}$
Allow 2.1 (1)
Allow method mark if formula of magnesium oxide or Mr incorrect

Mass original $\mathrm{MgO}=$ total mass MgO - mass formed from Mg

$$
\begin{equation*}
=6.41-2.13=4.28 \mathrm{~g} \quad \text { Allow } 4.3 \tag{1}
\end{equation*}
$$

Mark consequentially mass of magnesium oxide determined above

NB

As there is an error in part (d), the mass of sample should have been 6.25 NOT 2.65, award full marks to any candidate who has crossed out their correct first answer.

M2. Ideal gas equation: $\mathrm{pV}=\mathrm{nRT}$ (1)
Calculation: $\mathrm{n}=\mathrm{pV} / \mathrm{RT}=\frac{103000 \times 127 \times 10^{-6}}{(8.31 \times 415)}$ mark for volume conversion fully correct
$=3.79 \times 10^{-3}(\mathrm{~mol})(1)$
range 3.79×10^{-3} to 3.8×10^{-3}
$\mathrm{M}_{\mathrm{t}}=\mathrm{m} / \mathrm{n}=.304 / 3.79 \times 10^{-3}=80.1$ (1)
range 80-80.3
min 2 s.f. conseq
If ' V ' wrong lose $M 2$; ' p ' wrong lose M3; 'inverted' lose M3 and M4

M3.D

M4.D

