M1.(a) (i) Green Ignore shades of green.
(ii) Excess acidified potassium dichromate(VI)

Reflux (for some time)

In the diagram credit should be given for

- a vertical condenser

Lose M3 and M4 for a distillation apparatus.

- an apparatus which would clearly work

Do not allow this mark for a flask drawn on its own.
Penalise diagrams where the apparatus is sealed.
(iii) Distillation

Immediately (the reagents are mixed)
(b) Keep away from naked flames

Allow heat with water-bath or heating mantle.
If a list is given ignore eye protection, otherwise lose this mark.
(c) (i) Tollens' or Fehling's reagents Incorrect reagent(s) loses both marks. Accept mis-spellings if meaning is clear.

Silver mirror / red ppt. formed
Accept 'blue to red' but not 'red' alone.
(ii) Sodium carbonate (solution) / Group II metal

Allow indicator solutions with appropriate colours.
Accept any named carbonate or hydrogen carbonate.

Effervescence / evolves a gas
Accept 'fizzes'.
(d) Propanoic acid

If this mark is lost allow one mark if there is reference to stronger intermolecular forces in the named compound.
Lose M1 and M3.

Contains hydrogen bonding

Some comparison with other compounds explaining that the intermolecular forces are stronger in propanoic acid

M3.
(a) (i) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$; (penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ once only in this question)
(ii) Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{OR}$ concentrated $\mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{OR} \mathrm{Al}_{2} \mathrm{O}_{3}$; (penalise aqueous or dilute as a contradiction)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}$ OR C $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$; (penalise $\mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and CH_{2} : CH_{2} for ethene)
(b) Nickel OR Ni OR platinum OR Pt OR palladium OR Pd;

Hydrogen OR H_{2};
(c) (i) $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}$ Only;
$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}$ Only;
(empirical formula is not consequential on molecular formula)
(ii) (An unsaturated compound) contains (at least) one double bond OR

Contains $\mathrm{C}=\mathrm{C}$;
(must be a positive statement)
(iii) M1: Bromine water

OR
$\mathrm{Br}_{2}(\mathrm{aq})$
OR
Bromine
OR
Br_{2};

M1: decolourised or goes colourless

OR

from brown/red/orange/yellow to colourless; (Must be "colourless" not "clear" for M2) (chemical error if no reagent or wrong reagent, loses both marks) (credit KMnO ${ }_{4}$ for M1, (purple) to colourless for M2 (if acidified) $O R$ (purple) to brown/brown precipitate (if alkaline or unspecified) (No credit for hydrogen or iodine as reagents)

M4. (a) (i)

	The addition of AgNO_{3}	followed by concentrated	the addition of $\mathrm{NH}_{3}(\mathrm{aq})$
Observation with $\mathrm{NaBr}(\mathrm{aq})$	Cream or off white precipitate or solid (1)	Precipitate dissolves (1)	
Observation with $\mathrm{NaI}(\mathrm{aq})$	Yellow precipitate or solid (1)	Precipitate insoluble or no change (1)	

(ii) Ag F is soluble;
(b) (i) identity: $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3}$;
(ii) equation: $\mathrm{AgI}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}+\mathrm{I}^{-}$
(iii) use: in photography or as a fixer;
(c) (i) Structure

Observation: Vigorous or violent or exothermic reaction or fumes or white precipitate formed immediately
(ii) Structure:

Observation: No immediate precipiate or reaction
OR
white precipitate formed very slowly;
(d) (i) Silver-containing complex: $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{]}$;

Shape: Linear;
(ii) Structure

Explanation: Methanoic acid contains an aldehyde group;
(iii) $\mathrm{H}_{2} \mathrm{CO}_{3}$ or CO_{2} or $\mathrm{OC}(\mathrm{OH}) \mathrm{NH}_{2}$ or $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ OR
HCOONH_{4};
(b)

M1 Tollens' (reagent)	M1 Fehling's (solution) or
(Credit ammoniacal silver nitrate OR	Benedict's solution
a description of making Tollens')	(Ignore $\mathrm{Cu}^{2+}(\mathrm{aq})$ or
(Ignore either AgNO_{3} or $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]$	CuSO_{4} on their own, but mark on
or "the silver mirror test" on their own, but mark M2 and M3)	to M2 and M3)
M2 silver mirror	M2 Red solid/precipitate
	(Credit orange or brown solid)
OR	

black solid/precipitate (NOT silver precipitate)

M3 (stays) colourless	M3 (stays) blue
or no change or no reaction	or no change or no reaction

Mark on from an incomplete/incorrect attempt at the correct reagent, penalising M1

No reagent, $C E=0$
Allow the following alternatives
M1 (acidified) potassium dichromate(VI) (solution)
M2 (turns) green
M3 (stays) orange/no change
OR
M1 (acidified) potassium manganate(VII) (solution)
M2 (turns) colourless
M3 (stays) purple/no change
For M3
Ignore "nothing (happens)" Ignore "no observation"
(c) (Both have) $\mathrm{C}=\mathrm{O} O R$ a carbonyl (group)
(d) (i) (Free-) radical substitution ONLY

Penalise "(free) radical mechanism"
(ii) Initiation
$\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$
Penalise absence of dot once only.

First propagation

$\mathrm{Cl} \cdot+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \cdot{ }^{-} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$
$\mathrm{OR} \mathrm{C}_{3} \mathrm{H}_{8}$
Penalise incorrect position of dot on propyl radical once only. Penalise $\mathrm{C}_{3} \mathrm{H}_{7} \bullet$ once only

Second propagation

$\mathrm{Cl}_{2}+\cdot{ }^{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \cdot}$

OR

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$
Accept $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \bullet$ with the radical dot above/below/to the side of the last carbon.

Termination (must make $\mathbf{C}_{6} \mathbf{H}_{14}$)
$2 \cdot \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
Use of the secondary free radical might gain 3 of the four marks
(e) $\quad M_{\mathrm{t}}=44.06352$ (for propane)
$M_{r}=\underline{43.98982}$ (for carbon dioxide)
Mark independently
M1 a correct value for both of these $M_{\text {, values }}$.
M2 a statement or idea that two peaks appear (in the mass spectrum)
OR
two molecular ions are seen (in the mass spectrum).

