$M_{r} \quad=4(12.00000)+10(1.00794)$
$=\underline{58.07940}$ or $\underline{58.0794}$ or $\underline{58.079}$ or $\underline{58.08}$

and

58.1

Working is essential, leading to the final value of 58.1 which must be stated in addition to one of the four numbers underlined
(ii) By definition

OR
The standard / reference (value / isotope)
Reference to ${ }^{12} \mathrm{C}$ alone is not enough
(b)

All bonds and atoms must be drawn
Give credit for the displayed formula for the anion
(c) (i) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{OH}$

Any correct representation including correct use of "sticks".
Require the double bond to be shown
(ii) Addition (polymerisation)

ONLY this answer
(iii) M1 $\underline{C=C}$ (in range) $\underline{1620 \text { to } 1680\left(\mathrm{~cm}^{-1}\right)}$

M2 $\quad \mathrm{O}$ - H (in range) $\mathbf{3 2 3 0}$ to $\mathbf{3 5 5 0}\left(\mathrm{cm}^{-1}\right)$
Award one mark for two correct ranges but a failure to draw out the $\mathrm{C}=\mathrm{C}$ or $\mathrm{O}-\mathrm{H}$ bonds
(d) (i) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Any correct representation including correct use of "sticks"
(ii) C

M2.(a) (i) M1 double-headed curly arrow from the lone pair of the bromide ion to the C atom of the CH_{2}

Penalise additional arrows.
M2 double-headed arrow from the bond to the O atom
As follows

(ii) M1 nucleophilic substitution

M1 both words needed (allow phonetic spelling).
M2 1-bromo(-2-)methylpropane
M2 Require correct spelling in the name but ignore any hyphens or commas.
(b) M1 hydrolysis

For M1 give credit for 'hydration' on this occasion only.
M2 $\mathrm{C} \equiv \mathrm{N}$ with absorption range $\underline{2220-2260\left(\mathrm{~cm}^{-1}\right)}$
Credit 1 mark from M2 and M3 for identifying $C \equiv N$ and either
$\mathrm{O}-\mathrm{H}$ (acids) or $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}-\mathrm{O}$ without reference to wavenumbers or with incorrect wavenumbers.

M3 $\underline{\mathrm{O}-\mathrm{H}}$ (acids) with absorption range $\underline{2500-3000\left(\mathrm{~cm}^{-1}\right)}$
OR
$\mathrm{C}=\mathrm{O}$ with absorption range $\underline{1680-1750\left(\mathrm{~cm}^{-1}\right)}$

OR

C-O with absorption range $1000-1300\left(\mathrm{~cm}^{-1}\right)$
Apply the list principle to M3
(c) (i) M1 Yield / product OR ester increases / goes up / gets more

M2 (By Le Chateliers/principle) the position of equilibrium is driven / shifts / moves to the right / L to R / in the forward direction / to the product(s)

M3 - requires a correct statement in M2
(The position of equilibrium moves)
to oppose the increased concentration of ethanol
to oppose the increased moles of ethanol
to lower the concentration of ethanol
to oppose the change and decrease the ethanol
If no reference to M1, marks M2 and M3 can still score BUT
if $\mathbf{M 1}$ is incorrect $C E=0$
If there is reference to 'pressure' award M1 ONLY.
(ii) M1

Catalysts provide an alternative route / pathway / mechanism
OR
surface adsorption / surface reaction occurs
For M1, not simply 'provides a surface' as the only statement.
M1 may be scored by reference to a specific example.
M2
that has a lower / reduced activation energy
OR

lowers / reduces the activation energy

Penalise M2 for reference to an increase in the energy of the molecules.
For M2, the student may use a definition of activation energy without referring to the term.
Reference to an increase in successful collisions in unit time alone is not sufficient for M2 since it does not explain why this has occurred.

M3.(a) Percentage of oxygen by mass $=100-40.9-4.5=54.6$

	C	H	O
\%	$\frac{40.9}{12}$	$\frac{4.5}{1}$	$\frac{54.6}{16}$
Divide by A_{r}	$=3.41$	$=4.5$	$=3.41$

Divide by smallest $=\quad \frac{3.41}{3.41}=1 \quad \frac{4.5}{3.41}=1.32 \quad \frac{3.41}{3.41}=1$
Nearest whole number ratio $=1 \times 3 \quad 1.32 \times 3 \quad 1 \times 3$

$$
=3: 3.96: 3
$$

Nearest integer ratio $=3: 4: 3$

Empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
Empirical formula mass $=88=$ molecular formula mass
Therefore, molecular formula is same as the empirical formula - $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
(c) Advantage - ethanol is produced at a faster rate

Disadvantage - more energy is used / required in the reaction
(d) Air gets in / oxidation occurs
(e) Alcohol OH absorption in different place (3230-3550 cm^{-1}) from acid OH absorption (2500-3000 cm^{-1})

The $C=O$ in acids has an absorption at 1680-1750 cm^{-1}

M4.(a) (i) M1 (Compounds / molecules with) the same structural formula Penalise M1 if 'same structure' or 'different structural / displayed formula'.

M2 with atoms / bonds / groups arranged differently in space
OR atoms / bonds / groups with different spatial arrangements / different orientation

Ignore references to 'same molecular formula' or 'same empirical formula'.
Mark independently.
(ii)

Credit $\mathrm{C}-\mathrm{H}_{3} \mathrm{C}$
Credit $\mathrm{C}_{2} \mathrm{H}_{5}$
(b) $\mathrm{M1} \mathrm{Br}_{2}$ OR bromine (water) OR bromine (in CCl_{4} / organic solvent) If M1, has no reagent or an incorrect reagent, CE=0. Ignore 'acidified'.

M2 Isomer 1: decolourised / goes colourless / loses its colour For M1 penalise Br (or incorrect formula of other correct reagent), but mark on.

M3 Isomer 2: remains orange / red / yellow / brown / the same OR no reaction / no (observable) change OR reference to colour going to the cyclopentane layer

For M1, it must be a whole reagent and / or correct formula. If oxidation state given in name, it must be correct. If 'manganate' OR 'manganate(IV)' or incorrect formula, penalise M1, but mark on.

Alternatives : potassium manganate(VII)

M1 KMnO_{4} in acid M2 colourless M3 purple
M1 KMnO_{4} in alkali / neutral M2 brown solid M3 purple
Credit for the use of iodine
M1 iodine (solution / in KI) M2 colourless M3 (brown) to purple (credit no change)

Credit for the use of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
M1 concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ M2 brown M3 no change / colourless
Ignore 'goes clear'.
Ignore 'nothing (happens)'.
Ignore 'no observation'.
No credit for combustion observations.
(ii) The fingerprint (region) / below $1500 \mathrm{~cm}^{-1}$ will be different or its fingerprinting will be different

OR
different absorptions / peaks are seen (in the region) below $1500 \mathrm{~cm}^{-1}$ (or a specified region within the fingerprint range)

Allow the words 'dip' OR 'spike' OR 'low transmittance' as alternatives for absorption.

QoL

(d)

All bonds must be drawn. Ignore bond angles.
(e) (i) M1 Electrophilic addition

M1 both words needed.

Penalise one mark from their total if half-headed arrows are used.

M2 must show an arrow from the double bond towards the H atom of the $\mathrm{H}-\mathrm{Br}$ molecule

M2 Ignore partial negative charge on the double bond.
M3 must show the breaking of the $\mathrm{H}-\mathrm{Br}$ bond
M3 Penalise incorrect partial charges on $\mathrm{H}-\mathrm{Br}$ bond and penalise formal charges.

M4 is for the structure of the tertiary carbocation
Penalise M4 if there is a bond drawn to the positive charge.
Penalise once only in any part of the mechanism for a line and two dots to show a bond.

M5 must show an arrow from the lone pair of electrons on the negatively charged bromide ion towards the positively charged carbon atom of either a secondary or a tertiary carbocation

For M5, credit attack on a partially positively charged carbocation structure but penalise M4.
Max 3 of any 4 marks in the mechanism for wrong organic reactant or wrong organic product (if shown) or secondary carbocation.
Max 2 of any 4 marks in the mechanism for use of bromine.
Do not penalise the correct use of 'sticks".
NB The arrows here are double-headed

M1 Elimination

M1 credit 'base elimination' but no other qualifying prefix.
M2

Penalise one mark from their total if half-headed arrows are used.

M2 must show an arrow from the lone pair on oxygen of a negatively charged hydroxide ion to a correct H atom

Penalise M2 if covalent KOH
M3 must show an arrow from a correct $\mathrm{C}-\mathrm{H}$ bond adjacent to the $\mathrm{C}-\mathrm{Br}$ bond
to a correct C-C bond. Only award if an arrow is shown attacking the H atom of a correct adjacent C-H bond (in M2)

M4 is independent provided it is from their original molecule BUT penalise M2, M3 and M4 if nucleophilic substitution shown

Award full marks for an E1 mechanism in which M2 is on the correct carbocation

NB The arrows here are double-headed

Penalise M4 for formal charge on C or Br of the $\mathrm{C}-\mathrm{Br}$ bond or incorrect partial charges on C-Br.
Penalise M4 if an additional arrow is drawn from the Br of the $C-B r$ bond to, for example, K^{+}.
Ignore other partial charges.
Penalise once only in any part of the mechanism for a line and two dots to show a bond.
Max 2 of any 3 marks in the mechanism for wrong reactant or wrong organic product (if shown) or a correct mechanism that leads to the alkene 2-methylbut-2-ene. Credit the correct use of "sticks" for the molecule except for the $\mathrm{C}-\mathrm{H}$ being attacked.

M5 hydroxide ion behaves as a base / proton acceptor / electron pair donor / lone pair donor

Penalise M5 if 'nucleophile'.

Extended response
Absorption at $3360 \mathrm{~cm}^{-1}$ shows OH alcohol present
Deduction of correct structure without explanation scores maximum of 4 marks as this does not show a clear, coherent line of reasoning.

NMR

There are 4 peaks which indicates 4 different environments of hydrogen Maximum of 6 marks if no structure given OR if coherent logic not displayed in the explanations of how two of $\mathrm{OH}, \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{CH}_{3}$ are identified.

The integration ratio $=1.6: 0.4: 1.2: 2.4$
The simplest whole number ratio is $4: 1: 3: 6$

The singlet (integ 1) must be caused by H in OH alcohol

The singlet (integ 3) must be due to a CH_{3} group with no adjacent H

Quartet + triplet suggest $\mathrm{CH}_{2} \mathrm{CH}_{3}$ group

Integration 4 and integration 6 indicates two equivalent $\mathrm{CH}_{2} \mathrm{CH}_{3}$ groups

