M1.(a) Fractional distillation (under reduced pressure)
(b) BaSO_{4} insoluble / remove by filtration

Do not allow answers which refer to reaction rate
(c) Both contain OH group

Allow OH stretch in ir spectrum of each compound Do not allow 'same bonds'

M2. (a) (i)

O or RCOCH_{3};
(or description in words)
(ignore trailing bonds)
(ii) $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}$ or ROCH_{3};
(allow 1 if both (i) and (ii) give CH_{3} - or $\mathrm{H}_{3} \mathrm{C}$ - only)
(iii) $\mathrm{CH}_{2} \mathrm{CH}_{2}$ or two adjacent methylene groups;
(iv)

$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$;

(b) (i) OH in acids or (carboxylic) acid present
(ii)

(c)

reagent	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$	$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$
\mathbf{Y}	no reaction	no reaction
\mathbf{Z}	orange to green or turns green	purple to colourless or turns colourless

M3. (a) Allow 1 mark each for any correctly drawn primary, secondary and tertiary alcohol of molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$

Tertiary alcohol cannot be oxidised
(b) Region 1500-400 cm^{-1}
(c) $\begin{gathered}\mathrm{A} \\ \\ \text { or } \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \text { (1) }\end{gathered}$

C
one alkene e.g.

$$
\stackrel{\text { B }}{\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}(1}
$$

D one cycloalkane e.g.
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

 $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$

(1)
(1)
etc

E
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ (1)
F
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (1)

M4. (a) Functional group (isomerism)
(b)

M1 Tollens' (reagent) M1 Fehling's (solution) or (Credit ammoniacal silver nitrate OR Benedict's solution a description of making Tollens') (Ignore $\mathrm{Cu}^{2+}(\mathrm{aq})$ or (Ignore either AgNO_{3} or $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right] \quad \mathrm{CuSO} \mathrm{H}_{4}$ on their own, but mark on or "the silver mirror test" on their to M2 and M3) own, but mark M2 and M3)

M2 silver mirror
M2 Red solid/precipitate
(Credit orange or brown solid)

OR

black solid/precipitate
(NOT silver precipitate)

M3 (stays) colourless
or no change or no reaction

M3 (stays) blue or no change or no reaction
reagent, penalising M1No reagent, $C E=0$Allow the following alternativesM1 (acidified) potassium dichromate(VI) (solution)M2 (turns) greenM3 (stays) orange/no change
OR
M1 (acidified) potassium manganate(VII) (solution)
M2 (turns) colourless
M3 (stays) purple/no change
For M3
Ignore "nothing (happens)"
Ignore "no observation"
(c) (Both have) $\mathrm{C}=\mathrm{O} O R$ a carbonyl (group)
(d) (i) (Free-) radical substitution ONLYPenalise "(free) radical mechanism"
(ii) Initiation
$\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$
Penalise absence of dot once only.

First propagation

$\mathrm{Cl} \cdot+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \cdot{ }^{-} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$
OR C ${ }_{3} \mathrm{H}_{8}$
Penalise incorrect position of dot on propyl radical once only.
Penalise $\mathrm{C}_{3} \mathrm{H}_{7} \bullet$ once only

Second propagation

$\mathrm{Cl}_{2}+\cdot \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \cdot$

OR

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$
Accept $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \bullet$ with the radical dot above/below/to the side of the last carbon.

Termination (must make $\mathbf{C}_{6} \mathbf{H}_{14}$)

$2 \cdot \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
Use of the secondary free radical might gain 3 of the four marks
(e) $\quad M_{\mathrm{r}}=44.06352$ (for propane)
$M_{\mathrm{r}}=\underline{43.98982}$ (for carbon dioxide)

Mark independently

M1 a correct value for both of these M_{t} values.
M2 a statement or idea that two peaks appear (in the mass spectrum)
$O R$
two molecular ions are seen (in the mass spectrum).

M5. (a) Secondary OR 2° (alcohol);
(b) Spectrum is for butanone (or formula) or butan-2-one

The explanation marks depend on correctly identifying butanone.

If butanone is correctly identified, award any two from

- (Strong) absorption / peak at approximately $1700\left(\mathrm{~cm}^{-1}\right)$ / $1710\left(\mathrm{~cm}^{-1}\right)$ / in the range $1680-1750\left(\mathrm{~cm}^{-1}\right)$ This needs to be stated.
- (Characteristic) absorption / peak for $\mathrm{C}=\mathrm{O}$ (may be shown on the spectrum in the correct place).
- No absorption / peak in range 3230 to $3550 \mathrm{~cm}^{-1}$.
- No absorption / peak for an OH group.

Look at the spectrum to see if anything is written on it that might gain credit.
Allow the words "dip" OR "spike" OR "low transmittance" as alternatives for absorption.
(c) Displayed structure for 2-methylpropan-2-ol

Must have all bonds drawn out but ignore the bond angles

M6. (a) M1
Displayed formula for butan-2-ol

M1 displayed formula must have all bonds drawn out, including the $\mathrm{O}-\mathrm{H}$ but ignore angles
Penalise "sticks"
M2 Alcohol \mathbf{X} is

M2 structure must be clearly identifiable as
2-methylpropan-2-ol and may be drawn in a variety of ways.
M3 Alcohol \mathbf{Y} is named (2)-methylpropan-1-ol ONLY
M3 must be correct name, but ignore structures
(b) M1 The infrared spectrum shows an absorption/peak in the range 3230 to 3550 (cm^{-1})(which supports the idea that an alcohol is present) In M1, allow the words "dip", "spike", "low transmittance" and "trough" as alternatives for absorption.

M2 Reference to the 'fingerprint region' or below 1500 (cm^{-1})
M3 Match with or same as known sample/database spectra Check the spectrum to see if alcohol OH is labelled and credit.

OR
M2 Run infrared spectra (of the alcohols)
M3 Find which one matches or is the same as this spectrum.
(c) M1 balanced equation
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{OH}$
Or multiples for M1 and M3 In M1 and M3 penalise use of $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ or butan-2-ol once only

M2 Any one from

- excess/adequate/sufficient/correct amount of/enough/plenty/ a good supply of oxygen or air
- good mixing of the fuel and air/oxygen

For M2, do not accept simply "oxygen" or "air" alone Ignore reference to "temperature"

M3 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathbf{6 O} \rightarrow \mathbf{4 \mathrm { CO } _ { 2 }}+\mathbf{5 \mathrm { H } _ { 2 } \mathrm { O }}$
or $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$
M4 A biofuel is a fuel produced from (renewable) biological (re)source(s)
OR
(renewable) (re)source(s) from (a specified) plant(s)/fruit(s)/tree(s) In M4 Ignore references to "carbon neutral" lgnore "sugar" and "glucose"
(d) M1 butan-1-ol is a primary or 1° (alcohol)

M2 Displayed formula (ONLY) for butanal $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
M3 Displayed formula (ONLY) for butanoic acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
M2 and M3 displayed formula must have all bonds drawn out including the $\mathrm{O}-\mathrm{H}$ but ignore angles.
If butanal and butanoic acid formulae are both correctly given but not displayed, credit one mark out of two.

M4 Oxidation (oxidised) OR Redox
M5 orange to green
Both colours required for M5 Ignore states

