```
M1.B
```

[1]

```
M2.(a) M1 550 \times \frac{100}{95} = 579 \text{ g would be } 100\% \text{ mass}

Allow alternative methods.

There are 4 process marks:
```

1

M2 So
$$\frac{579}{65}$$
 = 8.91 moles NaN₃
or $\frac{550}{65}$ = 8.46 moles NaN₃ (this is 95%)
M2 So 100% would be 8.46 × $\frac{100}{95}$ = 8.91 moles NaN₃
1: mass ÷ 65
2: mass or moles × 100 / 95 or × 1.05
3: moles NaN₃ × 2
4: moles NaNH₂ × 39

1

Then M3 Moles NaNH₂ = 8.91 \times 2 = (17.8(2) moles)

1

M4 mass NaNH₂ = $17.8(2) \times 39$

1

M5 693 or 694 or 695 (g)

If 693, 694 or 695 seen to 3 sig figs award 5 marks

1

(b) M1 308 K and 150 000 Pa

1

$$M2 \quad n = \frac{PV}{RT} \quad or \quad \frac{150\ 000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$$

$$M3 \quad = 4.4(0) \text{ or } 4.395 \quad \text{moles N}_2$$

$$Allow \text{ only this answer but allow to more than 3 sig figs}$$

$$M4 \quad \text{Moles NaN}_3 = 4.395 \times \frac{2}{3} \quad (= 2.93)$$

$$M4 \quad \text{is for } M3 \times \frac{2}{3}$$

$$M5 \quad \text{Mass NaN}_3 = (2.93) \times 65$$

$$M5 \quad \text{is for moles } M4 \times 65$$

$$M6 = 191 \quad g$$

$$Allow \quad 190 \quad \text{to } 191 \quad g \quad \text{allow answers to 2 sig figs or more}$$

$$1000$$

$$\text{Conc} = 2.31 \times \frac{1000}{500}$$

$$M2 \quad \text{is for } M1 \times 1000 / 500$$

$$4.6(1) \quad \text{or } 4.6(2) \quad (\text{mol dm}^{-3})$$

$$Only \quad \text{this answer}$$

$$(ii) \quad 3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$$

$$Can \quad \text{allow multiples}$$

$$(d) \quad \text{Ionic}$$

$$\text{If not ionic then } CE = 0 / 3$$

$$\text{Oppositely charged } \frac{\text{ions}}{\text{lons}} \text{Na}^* \text{ and } N_3^- \text{ ions}$$

$$Penalise \quad \text{incorrect ions here but can allow } M3$$

$$\text{Strong } \frac{\text{attraction}}{\text{between (oppositely charged) ions / lots of energy needed to}$$

overcome (strong) <u>attractions</u> (between ions) M3 dependent on M2

(e) (i) $N \equiv N \longrightarrow N^{-}$ Only

1

1

1

[21]

- (ii) CO₂ / N₂O / BeF₂ / HN₃

 Allow other correct molecules
- (iii) MgN₆
 Only

M3.(a)

Method 1	Method 2
Mass of H ₂ O = 4.38-2.46	Percentage of H ₂ O = 44%

(= 1.92 g)

If there is an AE in M1 then can score M2 and M3 If M, incorrect can only score M1

	,	,		1
ZnSO₄	H_2O	ZnSO4	H2O	
2.46	<u>1.92</u>	<u>56</u>	<u>44</u>	
161.5	18	161.5	18	
				1
(0.0152	0.107)	(0.347	2.444)	
(1 .	7)	(1 ·	7)	

(1 : 7) (1 : 7) x = 7

If x = 7 with working then award 3 marks. Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.

Page 4

(b) Moles HCI = 0.12(0)

mol $ZnCl_2 = 0.06(0)$ **OR** 0.12 / 2

1

1

If M2 incorrect then CE and cannot score M2, M3 and M4.

mass $ZnCl_2 = 0.06 \times 136.4$ Allow 65.4 + (2 × 35.5) for 136.4

1

= 8.18(4) (g) **OR** 8.2 (g)

Must be to 2 significant figures or more. Ignore units.

1

(c) Moles
$$ZnCl_2 = \frac{10.7}{136.4}$$
 (= 0.0784)

1

OR moles Zn = 0.0784

Mass Zn reacting = $0.0784 \times 65.4 = (5.13 \text{ g})$ *M2 is for their M1* × *65.4*

1

% purity of
$$Zn = \frac{5.13}{5.68} \times 100$$

M3 is M2 \times 100 / 5.68 provided M2 is < 5.68

1

= 90.2% **OR** 90.3%

Allow alternative methods. $M1 = Moles ZnCl_2 = 10.7 (= 0.0784)$ 136.4 M2 = Theoretical moles $Zn = \underline{5.68}$ (= 0.0869) 65.4 $M3 = M1 \times 100 / M2 = (0.0784 \times 100 / 0.0869)$ $M4 = \underline{90.2\%}$ **OR** $\underline{90.3\%}$

1

(d) Ionic

If not ionic CE = 0/3

1

Strong (electrostatic) attraction (between ions)

1

1

between oppositely charged ions / + and - ions / F^- and Zn^{2+} ions If IMF, molecules, metallic bonding implied CE = 0/3

[14]

M4. (a) Hydrogen/H bonds

Not just hydrogen

1

van der Waals/vdw/dipole-dipole/London/temporarily induced dipole/dispersion forces

Not just dipole

1

8+ 08 H H

(b)

, H , H

M1 for partial charges as indicated in diagram (correct minimum)

M2 for all four lone pairs

M3 for H bond from the lp to the H $(\delta+)$ on the other molecule

	Lone pair on hydrogen CE = 0 OHO CE = 0 If only one molecule of water shown CE = 0	3
(c)	Hydrogen bonds/IMF (in water) stronger	
	OR	
	IMF/VDW/dipole-dipole forces (in H ₂ S) are weaker	
	OR	
	H bonding is the strongest IMF Ignore energy references Comparison must be stated or implied	1
(d)	Atoms/molecules get larger/more shells/more electrons/more surface area	
	Not heavier/greater Mr	1
	therefore increased <u>Van der Waals/IMF</u> forces <i>Ignore references to dipole-dipole forces</i>	1
(e)	Dative (covalent)/coordinate If not dative/coordinate CE = 0/2 If covalent or blank read on (Lone) pair/both electrons/two electrons on O(H₂) donated (to H⁺) OR pair/both electrons come from O(H₂) Explanation of a coordinate bond specific to oxygen or water required Not just H+ attracted to lone pair since that is nearer to a H bond	1
		1
(f)	ionic if not ionic CE = 0	1
	oppositely charged <u>ions</u> /+ and – <u>ions or particles</u>	

ions attract strongly OR strong/many (ionic) bonds must be broken S- loses M2
Reference to IMF loses M2 and M3

[13]

1

1