M1. (a) (i) Average/mean mass of 1 atom (of an element);

Average mass of 1 atom $\times 12$.

Mass $1 / 12$ atom of ${ }^{12} \mathrm{C}$;
Mass 1 atom of ${ }^{12} \mathrm{C}$. QWC.
(ii) Other isotope $=46.0 \%$;

$$
\begin{gathered}
107.9=\frac{(54 \times 107.1)+(46 \times ?)}{100} ; \\
M 2 \text { whole expression. }
\end{gathered}
$$

108.8;

Answer 108.8 (3 marks).
Answer min 1 d.p..

Same electronic configuration/ same number of electrons (in outer shell)/ both have 47 electrons;

Ignore protons and neutrons unless incorrect.
Not just electrons determine chemical properties.
(b) Ionisation;
high energy electrons fired at sample;
Allow electron gun /blasted with electrons.

Acceleration;

With electric field/accelerating potential/potential difference;
Allow by negative plate.

Deflection;

With electromagnet/ magnet/ magnetic field;
M2 dependent on M1.
(c) (Silver) metallic (bonding);
$V d w /$ molecules $C E=0$.

Regular arrangement of same sized particles;

+ charge in each ion;
Ignore multiple positive charges.
Candidates do not need to show delocalised electrons.
1
(d) Ionic (bonds);

Minimum 4 ions shown in 2D square arrangement placed Correctly;
Do not allow multiple charges on ions.

Further 3 ions shown correctly in a cubic lattice;

Strong (electrostatic) forces/bonds;
If vdw/molecules/covalent mentioned CE $=0$ for M4 and M5.

Between + and - ions;
Accept between oppositely charged ions.

M2. (a)

(1)

(1)
(b) (i) Attraction /electrostatic forces/bonds/attractions between (positive) ions/lattice and delocalised/free electrons/sea of electrons.
[Not metallic bonding] [Not just 'forces']
(ii) Electrostatic attractions/forces between ions or attractions between (oppositely charged) ions/ $\mathrm{Na}^{+} \& \mathrm{Cl}^{-}$ [Not ionic bonding]
(iii) (Here) the ionic bonding in NaCl is stronger/requires more energy to break than the metallic bonding in Na

QoL Accept 'bonding/forces of attraction in NaCl is stronger than in Na ' [If IMF/molecules/van der Waals'/dipole-dipole mentioned in parts(i) or (ii), then CE = 0 for parts (i) and/or(ii) and $C E=0$ for part(iii)]
(c) Comparison:

Sodium conducts and sodium chloride does NOT conduct
Allow 'only Na conducts' Accept 'Na conducts, NaCl only conducts when molten' [Do not accept sodium conducts better than sodium chloride etc.]

Explanation:
(Delocalised) electrons flow though the metal

Allow e- move/carry current/are charge carriers/transfer charge.
[Not 'electrons carry electricity']
[Not ' NaCl has no free charged particles']
lons can't move in solid salt
(d) Layers can slide over each other - idea that ions/atoms/particles move [Not molecules]
[Not layers separate]
(e) (i)
Na
Cl
O

$\frac{21.6}{23}$	$\frac{33.3}{35.5}$	$\frac{45.1}{16}$

$0.9(39)$	$0.9(38)$	$2.8(2)$
Hence:	1	1

Accept backwards calculation, i.e. from formula to \% composition, and also accept route via $M_{\text {r }}$ to 23; 35.5; 48, and then to 1:1:3
[lf \% values incorrectly copied, allow M1 only]
[If any wrong $A_{\text {t }}$ values/atomic numbers used $=C E=0$]
(ii) $3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

1
[12]

M3. (a)

Particle	Relative charge	Relative mass	
Proton	+1 or $1+$	1	$\mathbf{(1)}$
Neutron	0	1 (not -1)	$\mathbf{(1)}$
or no charge/neutral/zero		$1 / 1800$ to $1 / 2000$	$\mathbf{(1)}$

or negligible
or zero
or 5.0×10^{-4} to 5.6×10^{-4}
if ' g ' in mass column - wrong penalise once
(b) ${ }_{18}^{38} \mathrm{Ar}$ (1)(1)

Allow numbers before or after Ar
(c) $S: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}(1)$

Allow upper case letters
$S^{2}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}(1)$
If use subscript penalise once
(d) Block: p (1)

Explanation: Highest energy or outer orbital is (3) p OR outer electron, valency electron in (3) p NOT $2 p$ etc.
(e) (i) Bonding in $\mathrm{Na}_{2} \mathrm{~S}$: ionic (1)

Bonding in CS_{2} : covalent (1)
ignore other words such as dative / polar / co-ordinate
(ii) Clear indication of electron transfer from Na to S (1) $1 e^{-}$from each (of 2) Na atoms or $2 \mathrm{e}^{-}$from 2 Na atoms (1) QoL correct English
(iii)

Correct covalent bonds (1)
All correct including lone pairs (1)
Allow all $\bullet s$ or all $\times s$
M2 tied to M1
NOT separate e-s in S-- $21 p$
(iv) $\mathrm{CS}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{~S}$ (1)

Ignore state symbols even if wrong

