M1.		(a)	(i) <u>Average/mean mass of 1 atom (of an element);</u> <u>Average mass of 1 atom × 12.</u>	1
			Mass 1/12 atom of ¹² C;	
			Mass 1 atom of ${}^{12}C$.	
			QWC.	
				1
		(ii)	Other isotope = 46.0%;	
		(11)	Other isotope = 40.0%,	1
			(54 × 107.1) + (46 × ?)	
			$107.9 = \frac{100}{100};$	
			M2 whole expression.	
				1
			108.8;	
			Answer 108.8 (3 marks). Answer min 1 d.p	
			7.116Wei 11111 1 d.p	1
			Same electronic configuration/ same number of electrons (in	
			outer shell)/ both have 47 electrons;	
			Ignore protons and neutrons unless incorrect. Not just electrons determine chemical properties.	
				1
	(b)	lon	nisation;	1
				1
		hig	gh energy electrons fired at sample; Allow electron gun /blasted with electrons.	
			Anow electron gun iblasted with electrons.	1
		Ac	celeration;	
				1
		Wi	ith electric field/accelerating potential/potential difference;	
			Allow by negative plate.	
				1
		De	eflection;	1
				1
		Wi	ith electromagnet/ magnetic field;	
			M2 dependent on M1.	

(c)	(Silver) metallic (bonding); <i>Vdw/molecules CE=0.</i>	4
	Regular arrangement of same sized particles;	1
	+ charge in each ion; Ignore multiple positive charges. Candidates do not need to show delocalised electrons.	1
(d)	Ionic (bonds);	1
	Minimum 4 ions shown in 2D square arrangement placed Correctly; Do not allow multiple charges on ions.	1
	Further 3 ions shown correctly in a cubic lattice;	1
	Strong (electrostatic) forces/bonds; If vdw/molecules/covalent mentioned CE = 0 for M4 and M5.	1
	Between <u>+ and – ions;</u> Accept between <u>oppositely charged ions</u> .	1

[20]

1

(1)

2

(b)	 (i) <u>Attraction</u> /electrostatic forces/bonds/attractions between (positive) ions/lattice and <u>delocalised/free</u> electrons/sea of electrons. [Not metallic bonding] [Not just 'forces'] 					
	(ii)	Electrostatic attractions/forces between ions or attractions between (oppositely charged) ions/ Na [.] & Cl [.] <i>[Not ionic bonding]</i>	1			
	(iii)	(Here) the ionic bonding in NaCl is stronger/requires more energy to break than the metallic bonding in Na				
	QoL	Accept 'bonding/forces of attraction in NaCl is strong <u>er</u> than in Na' [If IMF/molecules/van der Waals'/dipole–dipole mentioned in parts(i) or (ii), then CE = 0 for parts (i) and/or(ii) and				
		CE = 0 for part(iii)]	1			
(c)		nparison: um conducts and sodium chloride does NOT conduct <i>Allow 'only Na conducts'</i> <i>Accept 'Na conducts, NaCl only conducts when molten'</i> [Do not accept sodium conducts better than sodium chloride etc.]	1			
	•	anation: ocalised) electrons flow though the metal	1			
	Allow e- move/carry current/are charge carriers/transfer charge. [Not 'electrons carry electricity'] [Not 'NaCl has no free charged particles']					
	<u>lons</u>	can't move in solid salt	1			
(d)	Laye	ers can slide over each other – idea that ions/atoms/particles move [Not molecules] [Not layers separate]	1			
(e)	(i)	<u>Na Cl O</u>				

	<u>21.6</u> 23	<u>33.3</u> 35.5	<u>45.1</u> 16		
				1	
	0.9(39)	0.9(38)	2.8(2)		
Henc	e: 1	1	3		
Acce	ot backwards c	alculation, i.e. fr	om formula to % c	omposition,	
and also accept route via <i>M</i> to 23; 35.5; 48, and then to 1:1:3					
[If % values incorrectly copied, allow M1 only] [If any wrong A,values/atomic numbers used = CE = 0]					

(ii) $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$

[12]

1

M3. (a)

Particle	Relative charge	Relative mass	
Proton	+1 or 1+	1	(1)
Neutron	0 or no charge/neutral/zero	1 (<u>not</u> – 1)	(1)
Electron	–1 or 1–	1/1800 to 1/2000	(1)

or negligible or zero or 5.0 × 10⁻⁴ to 5.6 × 10⁻⁴

if 'g' in mass column - wrong penalise once

3

(b) ³⁸/₁₈ År (1)(1) Allow numbers before or after Ar

2

(c) S: 1s² 2s² 2p⁶ 3s² 3p⁴ (1) *Allow upper case letters*

> S²: 1s² 2s² 2p⁶ 3s² 3p⁶ (1) If use subscript penalise once

2

2

- (d) Block: p (1) Explanation: Highest energy or outer orbital is (3) p OR outer electron, valency electron in (3) p NOT 2p etc.
- (e) (i) Bonding in Na₂S: ionic (1) Bonding in CS₂: covalent (1) ignore other words such as dative / polar / co-ordinate
 - (ii) Clear indication of electron transfer from Na to S (1)
 1 e⁻ from each (of 2) Na atoms or 2 e⁻ from 2 Na atoms (1)
 QoL correct English

(iii)

Correct covalent bonds (1) <u>All correct</u> including <u>lone pairs</u> (1) *Allow all •s or all ×s M2 tied to M1 NOT separate e-s in S•- 2 l p*

(iv) $CS_2 + 2H_2O \rightarrow CO_2 + 2H_2S$ (1) Ignore state symbols even if wrong

[16]

7