M1.(a) Crude oil OR petroleum
Not petrol.

Fractional distillation / fractionation

Not distillation alone.
(b) $\mathrm{C}_{12} \mathrm{H}_{26}+12.5 \mathrm{O}_{2} \longrightarrow 12 \mathrm{CO}+13 \mathrm{H}_{2} \mathrm{O}$

Allow balanced equations that produce CO_{2} in addition to CO.
Accept multiples.
(c) (i) M1 Nitrogen and oxygen (from air) react / combine / allow a correct equation

If nitrogen from petrol / paraffin / impurities CE $=0 / 2$.

M2 at high temperatures
Allow temperatures above $1000^{\circ} \mathrm{C}$ or spark.
Not just heat or hot.
M2 dependent on M1.
But allow 1 mark for nitrogen and oxygen together at high temperatures.
(ii) $2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$

Allow multiples.
(iii) $4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow 4 \mathrm{HNO}_{3}$

Allow multiples.
(d) (i) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$

Allow $\mathrm{C}_{x} \mathrm{H}_{2 \times+2}$
CnH2n+2
Allow $\mathrm{CxH} 2 \mathrm{x}+2$

Zeolite / aluminosilicate(s)
Ignore aluminium oxide.
(iii) Larger molecule / longer carbon chain / more electrons / larger surface area

More / stronger van der Waals' forces between molecules
Allow dispersion forces / London forces / temporary induced dipole-dipole forces between molecules. If breaking bonds, $C E=0 / 2$.
(e) 2,2,3,3,4,4-hexamethylhexane

Only.
Ignore punctuation.

Chain
Ignore branch(ed).
(f) $\quad \mathrm{Cl}_{2}$

Only.
$\mathrm{Cl}-\mathrm{Cl}$
Not CL_{2} or Cl 2 or CL 2 or Cl^{2} or CL^{2}. Ignore Chlorine.

M2.(a) (i) M1 (Compounds / molecules with) the same structural formula
Penalise M1 if 'same structure' or 'different structural / displayed formula'.

M2 with atoms / bonds / groups arranged differently in space
OR atoms / bonds / groups with different spatial arrangements / different orientation

Ignore references to 'same molecular formula' or 'same empirical formula'.
Mark independently.
(ii)

(b) $\quad \mathbf{M 1 ~ B r} r_{2}$ OR bromine (water) OR bromine (in CCl_{4} / organic solvent)

If M1, has no reagent or an incorrect reagent, CE=0. Ignore 'acidified'.

M2 Isomer 1: decolourised / goes colourless / loses its colour For M1 penalise Br (or incorrect formula of other correct reagent), but mark on.

M3 Isomer 2: remains orange / red / yellow / brown / the same OR no reaction
/ no (observable) change OR reference to colour going to the cyclopentane layer

For M1, it must be a whole reagent and / or correct formula.
If oxidation state given in name, it must be correct. If 'manganate' OR 'manganate(IV)' or incorrect formula, penalise M1, but mark on.

Alternatives : potassium manganate(VII)

$\mathbf{M 1 ~} \mathrm{KMnO}_{4}$ in acid $\mathbf{M} \mathbf{2}$ colourless $\mathbf{M} 3$ purple
$\mathbf{M 1} \mathrm{KMnO}_{4}$ in alkali / neutral $\mathbf{M} \mathbf{2}$ brown solid $\mathbf{M} 3$ purple
Credit for the use of iodine
M1 iodine (solution / in KI) M2 colourless M3 (brown) to purple (credit no change)

Credit for the use of concentrated $\mathbf{H}_{2} \mathrm{SO}_{4}$
M1 concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ M2 brown M3 no change / colourless
Ignore 'goes clear'.
Ignore 'nothing (happens)'.
Ignore 'no observation'.
No credit for combustion observations.
(ii) The fingerprint (region) / below $1500 \mathrm{~cm}^{-1}$ will be different or its fingerprinting will be different

OR
different absorptions / peaks are seen (in the region) below $1500 \mathrm{~cm}^{-1}$ (or a specified region within the fingerprint range)

Allow the words 'dip' OR 'spike' OR 'low transmittance' as alternatives for absorption.
QoL
(d)

All bonds must be drawn. Ignore bond angles.

(e) (i) M1 Electrophilic addition

M1 both words needed.

M4 Structure

M3
Penalise one mark from their total if half-headed arrows are used.

M2 must show an arrow from the double bond towards the H atom of the $\mathrm{H}-\mathrm{Br}$ molecule

M2 Ignore partial negative charge on the double bond.
M3 must show the breaking of the $\mathrm{H}-\mathrm{Br}$ bond
M3 Penalise incorrect partial charges on $\mathrm{H}-\mathrm{Br}$ bond and penalise formal charges.

M4 is for the structure of the tertiary carbocation
Penalise M4 if there is a bond drawn to the positive charge.
Penalise once only in any part of the mechanism for a line and two dots to show a bond.

M5 must show an arrow from the lone pair of electrons on the negatively charged bromide ion towards the positively charged carbon atom of either a secondary or a tertiary carbocation

For M5, credit attack on a partially positively charged carbocation structure but penalise M4.
Max 3 of any 4 marks in the mechanism for wrong organic reactant or wrong organic product (if shown) or secondary carbocation.
Max 2 of any 4 marks in the mechanism for use of bromine.
Do not penalise the correct use of 'sticks".

NB The arrows here are double-headed

(ii) M1 Reaction goes via intermediate carbocations / carbonium ions M1 is a lower demand mark for knowledge that carbocations are involved.

M2 (scores both marks and depends on M1)

Tertiary carbocation / carbonium ion is more stable (than the secondary carbocation / carbonium ion)

OR

Secondary carbocation / carbonium ion is less stable (than the tertiary carbocation / carbonium ion)

M2 is of higher demand and requires the idea that the secondary carbocation is less stable or the tertiary carbocation is more stable. Reference to incorrect chemistry is penalised.
A carbocation may be defined in terms of alkyl groups / number of carbon atoms, rather than formally stated.

(f) M1 Elimination

M1 credit 'base elimination' but no other qualifying prefix.

Penalise one mark from their total if half-headed arrows are used.

M2 must show an arrow from the lone pair on oxygen of a negatively charged hydroxide ion to a correct H atom

Penalise M2 if covalent KOH
M3 must show an arrow from a correct $\mathrm{C}-\mathrm{H}$ bond adjacent to the $\mathrm{C}-\mathrm{Br}$ bond to a correct $\mathrm{C}-\mathrm{C}$ bond. Only award if an arrow is shown attacking the H atom of a correct adjacent C-H bond (in M2)

M4 is independent provided it is from their original molecule BUT penalise M2, M3 and M4 if nucleophilic substitution shown

Award full marks for an E1 mechanism in which M2 is on the correct carbocation

NB The arrows here are double-headed

Penalise M4 for formal charge on C or Br of the $\mathrm{C}-\mathrm{Br}$ bond or incorrect partial charges on C-Br.
Penalise M4 if an additional arrow is drawn from the Br of the $\mathrm{C}-\mathrm{Br}$ bond to, for example, K^{+}.
Ignore other partial charges.
Penalise once only in any part of the mechanism for a line and two dots to show a bond.
Max 2 of any 3 marks in the mechanism for wrong reactant or wrong organic product (if shown) or a correct mechanism that leads to the alkene 2-methylbut-2-ene.
Credit the correct use of "sticks" for the molecule except for the $\mathrm{C}-\mathrm{H}$ being attacked.

M5 hydroxide ion behaves as a base / proton acceptor / electron pair donor / lone pair donor

Penalise M5 if 'nucleophile'.

M3.(a) (i) (nucleophilic) addition-elimination
Not electrophilic addition-elimination
Ignore esterification

M3 for structure

- If wrong nucleophile used or O-H broken in first step, can only score M2.
- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses M2.
- If Cl lost with $\mathrm{C}=\mathrm{O}$ breaking lose M2.
- M3 for correct structure with charges but lone pair on O is part of M4.
- Only allow M4 after correct / very close M3.
- Ignore HCl shown as a product.
a 20-50 (ppm) or single value or range entirely within this range If values not specified as a or b then assume first is a.
b $\quad 50-90(\mathrm{ppm})$ or single value or range entirely within this range
(ii)

Must have trailing bonds, but ignore n.

Allow

but not $\quad-\mathrm{C}_{4} \mathrm{H}_{8-}$
one unit only
Condensation
(b)

	Tollens'	Fehling's / Be nedicts	Acidified potassium dichromate

Penalise wrong formula for Tollens or missing acid with potassium dichromate but mark on.

\boldsymbol{J}	No reaction / no (visible) change / no silver mirror	No reaction / no (visible) change / stays blue /no red $p p t$	No reaction / no (visible) change / stays orange / does not turn

			green

Ignore 'clear', 'nothing'.
Penalise wrong starting colour for dichromate.

\boldsymbol{K}	Silver mirror $/ 2$ grey ppt	Red ppt (allow brick red or red-orange)	(orange) turns green

J Two (peaks)
Allow trough, peak, spike.

K Four (peaks)
Ignore details of splitting.
If values not specified as J or K then assume first is J.
(c) If all the structures are unlabelled, assume that the first drawn ester is L, the second ester is M; the first drawn acid is N, the second P. The cyclic compound should be obvious.

L
ester

OR $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$
All $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~L}$ to P must have $\mathrm{C}=\mathrm{C}$.
Allow CH_{3}-.
Allow $-\mathrm{CO}_{2} \mathrm{CH}_{3}$ etc.
Allow $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$.
ester

$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OOCH}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHOOCH}$ Allow either $\mathrm{E}-\mathrm{Z}$ isomer.

Allow CH_{3} - or $\mathrm{C}_{2} \mathrm{H}_{5}$ - but not $\mathrm{CH}_{2} \mathrm{CH}_{3}$ Allow $\mathrm{CH}_{3} \mathrm{CHCHCOOCH}_{3}$ etc.

N

acid

OR

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOOH}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{COOH}) \mathrm{CH}_{2} \mathrm{C}$
H_{3}
Allow CH_{3} - or $\mathrm{C}_{2} \mathrm{H}_{5}$ - but not $\mathrm{CH}_{2} \mathrm{CH}_{3}$ -
Allow $-\mathrm{CO}_{2} \mathrm{H}$.
Not cyclic isomers.
Not the optically active isomer.

which is P anyway
Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCHCOOH}$ etc.

P

acid

$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{COOH}) \mathrm{CH}=\mathrm{CH}_{2}$

Allow $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{CHCH}_{2}$ or $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}_{2} \mathrm{H}_{3}$.

Not cyclic esters.

