M1. (a) 37

These answers only.
Allow answers in words.

48 Ignore any sum(s) shown to work out the answers.

 (b) (i) Electron gun / high speed/high energy electrons Not just electrons.
 Not highly charged electrons.

1

1

1

Knock out electron(s) Remove an electron.

1

1

(ii) $Rb(g) \rightarrow Rb^{+}(g) + e^{\ominus}$ *OR* $Rb(g) + e^{\ominus} \rightarrow Rb^{+}(g) + 2e^{\ominus}$ *OR* $Rb(g) - e^{\ominus} \rightarrow Rb^{+}(g)$ *Ignore state symbols for electron.*

(c) Rb is a bigger (atom) / e further from nucleus / electron lost from a higher energy level/ More shielding in Rb / less attraction of nucleus in Rb for outer electron / more shells

> Answer should refer to Rb not Rb molecule If converse stated it must be obvious it refers to Na Answer should be comparative.

1

1

(d) (i) s / block s / group s Only

(ii) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹ Allow 3d¹⁰ before 4s² Allow in any order. 1 (e) <u>(85 × 2.5) + 87 ×1</u> 3.5 M1 is for top line 1 1 = <u>85.6</u> Only 1 OR (58 × 5) + 87 ×2 7 M1^{ss}Rb 71.4% and ^{sr}Rb 28.6% M2 divide by 100 1 1 85.6 *M*3 = <u>85.6</u> 1 (f) Detector Mark independently Allow detection (plate). 1 Current / digital pulses / electrical signal related to abundance Not electrical charge. 1 Smaller (g) Chemical error if not smaller, CE = 0/3If blank mark on. 1

Bigger nuclear charge / more protons in Sr Not bigger nucleus.

Similar/same shielding QWC (Outer) <u>electron</u> entering same shell/sub shell/orbital/same number of shells. Do not allow incorrect orbital.

[16]

M2. (a) $2Ca_{5}F(PO_{4})_{3}+9SiO_{2}+15C \rightarrow 9CaSiO_{3}+CaF_{2}+15CO+6P$

(b) **M1** (P₄ =) **0**

M2 (H₃PO₄ =) **(+) 5** Accept Roman numeral V for **M2**

2

1

1

1

(c) H_2SO_4

Both numbers required

*M*_r = 2(1.00794) + 32.06550 + 4(15.99491) = **98.06102 or 98.0610 or 98.061 or 98.06 or 98.1** *Calculations not required*

<u>and</u>

H₃PO₄

- *M*_r = 3(1.00794) + 30.97376 + 4(15.99491) = **97.97722** or **97.9772** or **97.977** or **97.98** or **98.0**
- 1
- (d) (i) A substance that <u>speeds up</u> a reaction OR <u>alters / increases the rate</u> of a reaction **AND** is <u>chemically unchanged at the end / not used up</u>.

	Both ideas needed Ignore reference to activation energy or alternative route.	1
(ii)	The <u>addition of water</u> (QoL) to a molecule / compound QoL- for the underlined words	1
(iii)	M1 CH ₃ CH=CH ₂ + H ₂ O \longrightarrow CH ₃ CH(OH)CH ₃ (C ₃ H ₆) For M1 insist on correct structure for the alcohol but credit correct equations using either C ₃ H ₆ or double bond not given.	
	M2 propan-2-ol	

[8]

2

1

1

1

(1428) (17) $\frac{(82 \times 2) + (83 \times 2) + (84 \times 10) + (86 \times 3)}{17}$

M3.(a)

M1 for the top line M2 is for division by 17

= <u>84.0</u>

Not 84 No consequential marking from M1 or M2 Ignore units

The A_r in the Periodic table takes account of the other isotopes /different amounts of isotopes (or words to that effect regarding isotopes) Award independently

1

1

1

1

1

1

1

1

[9]

(b) (Beam of electrons from) an electron gun / high speed / high energy electrons Knocks out electron(s) (to form a positive ion) $Kr(g) + e^{-} \rightarrow Kr^{+}(g) + 2e(^{-})$ State symbols must clearly be (g) OR $Kr(g) \rightarrow Kr^{(}(g) + e^{()} / Kr(g) - e^{()} \rightarrow Kr^{(}(g)$ The ⁸⁴Kr isotope One mark for identifying the 84 isotope Has 2 electrons knocked out / gets a 2+ charge One mark for the idea of losing 2 electrons (from this isotope) (a) Average/mean mass of (1) atom(s) (of an element) 1/12 mass of one atom of 12C Accept answer in words

OR

M4.

(Average) mass of one mole of atoms 1/12 mass of one mole of 12C

Can have top line × 12 instead of bottom line ÷ 12

OR

(Weighted) average mass of all the isotopes
1/12 mass of one atom of 12C

OR

Average mass of an atom/isotope compared to C-12 on a scale in which an atom of C-12 has a mass of 12

	<u>(95.12 × 14) + (4.88 × 15)</u> 100 <i>Allow 95.12 + 4.88 instead of 100</i>	1
	= 14.05 If not to 2 d.p. then lose last mark Not 14.04	1
(b)	^{₁₅} N is heavier/¹₅N has a bigger m/z/different m/z values Not different no's of neutrons Not ionisation potential	1
	Electromagnet/electric field/magnet/accelerating potential or voltage/electric current	1
(c)	No difference	1
	Same no of electrons (in outer orbital/shell/sub shell)/same electron configuration <i>M2 dependent on M1</i> <i>Not just electrons determine chemical properties</i> <i>Ignore protons</i>	1

8 neutrons

(a)

1

1

1

1

1

M6.

- (i) Different number / amount of neutrons
 Not different neutrons
 Ignore same protons and/or electrons
 CE incorrect statement relating to protons / electrons
- (ii) Same electron configuration / same number of electrons (in the outer shell)
 Ignore same no of protons Ignore electrons determine chemical properties CE if wrong statement relating to protons / neutrons
- (b) <u>Average mass of 1 atom (of an element)</u> 1/12 mass atom of ¹²C

OR

Average/mean mass of atoms of an element 1/12 mass of one atom of ¹²C

OR

(Average) mass of one mole of atoms 1/12 mass of one mole of ${}^{12}C$

OR

(Weighted) average mass of all the isotopes 1/12 mass of one atom of ¹²C

OR

Average mass of an atom/isotope compared to C-12 on a scale in which an atom of C-12 has a mass of 12

If moles and atoms mixes Max = 1 Mark top and bottom line independently 1/12 on bottom line can be represented as x 12 on top line This expression = 2 marks

2

(i)
$$\frac{(64 \times 12) + (66 \times 8) + (67 \times 1) + (68 \times 6)}{27} \frac{(=1771)}{27}$$

= 65.6

(C)

If not 27 max 1 mark (for top line) Mark is for dividing by 27 or string If **evidence** of arithmetic or transcription error seen in M1 or M2 allow consequential M3 and consequential (c)(ii) 65.6 = 3 marks

3

2

1

(ii) ⁶⁴Zn⁺

M1 for identifying Zn / zinc M2 is for the + sign and the 64 M2 is dependent on M1

(d) Size of the charge (on the ion) / different charges / different m/z
 Allow forms 2+ ions
 QWC

 (e) (ions hit detector and) cause current/(ions) accept electrons/cause electron flow/electric pulse caused bigger current = more of that isotope/current proportional to abundance *Implication that current depends on the number of ions M2 dependent on M1*

2