$M_{r} \quad=4(12.00000)+10(1.00794)$
$=\underline{58.07940}$ or $\underline{58.0794}$ or $\underline{58.079}$ or $\underline{58.08}$

and

58.1

Working is essential, leading to the final value of 58.1 which must be stated in addition to one of the four numbers underlined
(ii) By definition

OR
The standard / reference (value / isotope)
Reference to ${ }^{12} \mathrm{C}$ alone is not enough
(b)

All bonds and atoms must be drawn
Give credit for the displayed formula for the anion
(c) (i) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{OH}$

Any correct representation including correct use of "sticks".
Require the double bond to be shown
(ii) Addition (polymerisation)

ONLY this answer
(iii) M1 C=C (in range) 1620 to $1680\left(\mathrm{~cm}^{-1}\right)$

M2 $\quad \mathrm{O}-\mathrm{H}$ (in range) $\mathbf{3 2 3 0}$ to $\mathbf{3 5 5 0}\left(\mathrm{cm}^{-1}\right)$
Award one mark for two correct ranges but a failure to draw out the $\mathrm{C}=\mathrm{C}$ or $\mathrm{O}-\mathrm{H}$ bonds
(d) (i) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Any correct representation including correct use of "sticks"
(ii) C

M2. (a) $2 \mathrm{Ca}_{5} \mathrm{~F}\left(\mathrm{PO}_{4}\right)_{3}+9 \mathrm{SiO}_{2}+15 \mathrm{C} \longrightarrow 9 \mathrm{CaSiO}_{3}+\mathrm{CaF}_{2}+15 \mathrm{CO}+6 \mathrm{P}$
(b) $\quad \mathbf{M 1}\left(\mathrm{P}_{4}=\right) \mathbf{0}$
$\mathbf{M 2}\left(\mathrm{H}_{3} \mathrm{PO}_{4}=\right)(+) \mathbf{5}$
Accept Roman numeral V for M2
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$

Both numbers required

$$
\begin{aligned}
M_{r} \quad & =2(1.00794)+32.06550+4(15.99491) \\
& =98.06102 \text { or } 98.0610 \text { or } 98.061 \text { or } 98.06 \text { or } 98.1
\end{aligned}
$$

Calculations not required
and
$\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
\begin{aligned}
M_{r} & =3(1.00794)+30.97376+4(15.99491) \\
& =97.97722 \text { or } 97.9772 \text { or } 97.977 \text { or } 97.98 \text { or } 98.0
\end{aligned}
$$

(d) (i) A substance that speeds up a reaction OR alters / increases the rate of a reaction AND is chemically unchanged at the end / not used up.

Both ideas needed

Ignore reference to activation energy or alternative route.
(ii) The addition of water (QoL) to a molecule / compound QoL- for the underlined words
(iii) $\quad \mathrm{M} 1 \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
$\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$
For M1 insist on correct structure for the alcohol but credit correct equations using either $\mathrm{C}_{3} \mathrm{H}_{6}$ or double bond not given.

M2 propan-2-ol

M3.(a) H OR hydrogen OR H^{+}
Ignore brackets ignore dot penalise + or - charge
(c) Either order
$\mathrm{C}_{2} \mathrm{H}_{5} \quad$ OR ethyl OR $\quad \mathrm{CH}_{3} \mathrm{CH}_{2}^{\circ} \quad$ OR $\quad \mathrm{C}_{2} \mathrm{H}_{5}^{*}$
lgnore brackets ignore dot
penalise + or - charge
(d) I A

II C

III D

IV B

M4. (a) The molecular ion is

- The molecule with one/an electron knocked off/lost

Ignore the highest or biggest m / z peak
OR

- The molecule with a (single) positive charge

OR

- the ion with/it has the largest/highest/biggest m / z (value/ratio)

Ignore "the peak to the right"
OR

- the ion with/it has an m / z equal to the M_{r} Ignore "compound"
(b) (i) $\underline{2(14.00307)+15.99491}=\underline{44.00105}$

A sum is needed to show this
(ii) Propane $/ \mathrm{C}_{3} \mathrm{H}_{8}$ and carbon dioxide $/ \mathrm{CO}_{2}$ (and $\mathrm{N}_{2} \mathrm{O}$) or they or both the gases/molecules or all three gases/molecules have an (imprecise) M_{r} of 44.0 (OR 44)

OR

they have the same $\boldsymbol{M}_{\mathrm{r}}$ or molecular mass (to one d.p)
This could be shown in a calculation of relative masses for propane and carbon dioxide
(iii) By definition

OR
The standard/reference (value/isotope)
Ignore "element"
Ignore "atom"
(c) (i) M1 (could be scored by a correct mathematical expression)
$\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\text {pootucus }}-\Sigma \Delta \mathrm{H}_{\text {reacants }}$
OR a correct cycle of balanced equations
M1 and M2 can be scored with correct moles as follows
$\Delta H+2(-46)=+82+3(-286)$
$\Delta H-92=-776$
$\Delta H=92-776$ OR $92+82-858$
M3
$\Delta H=\underline{-684}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (This is worth 3 marks)
Award 1 mark ONLY for + 684
Full marks for correct answer.
Ignore units.
Deduct one mark for an arithmetic error.
(ii) The value is quoted at a pressure of 100 kPa OR 1 bar or $\underline{10^{5} \mathrm{~Pa}}$ OR

All reactants and products are in their standard states/their normal states at 100 kPa or 1 bar

Ignore 1 atmosphere/101 kPa
Ignore "constant pressure"

