M1.(a) (i) C_4H_{10}

 $M_{\rm r}$ = 4(12.00000) + 10(1.00794) = 58.07940 or 58.0794 or 58.079 or 58.08

<u>and</u> <u>58.1</u>

Working is essential, leading to the final value of 58.1 which must be stated in addition to one of the four numbers underlined

(ii) By definition

ÓR

The <u>standard</u> / <u>reference</u> (value / isotope)

Reference to ¹²C alone is not enough

(b)

All bonds and atoms must be drawn Give credit for the displayed formula for the anion

(c) (i) $H_2C = CHCH_2OH$

Any correct representation including correct use of "sticks". Require the double bond to be shown

(ii) Addition (polymerisation)

ONLY this answer

(iii) M1 C = C (in range) 1620 to 1680 (cm⁻¹)

1

1

1

1

1

M2 O – H (in range) 3230 to 3550 (cm⁻¹)

Award one mark for two correct ranges but a failure to draw out the C = C or O-H bonds

2

(d) (i) CH₃COCH₃

Any correct representation including correct use of "sticks"

1

1

(ii) C

[9]

M2. (a)
$$2Ca_5F(PO_4)_3 + 9SiO_2 + 15C \longrightarrow 9CaSiO_3 + CaF_2 + 15CO + 6P$$

1

(b) M1 ($P_4 =)$ 0

 $M2 (H_3PO_4 =) (+) 5$

Accept Roman numeral V for M2

2

(c) H_2SO_4

Both numbers required

 M_r = 2(1.00794) + 32.06550 + 4(15.99491) = **98.06102** or **98.0610** or **98.061** or **98.06** or **98.1**

Calculations not required

<u>and</u>

H₃PO₄

$$M_r$$
 = 3(1.00794) + 30.97376 + 4(15.99491)
= 97.97722 or 97.9772 or 97.977 or 97.98 or 98.0

1

(d) (i) A substance that <u>speeds up</u> a reaction OR <u>alters / increases the rate</u> of a reaction **AND** is <u>chemically unchanged at the end / not used up</u>.

Both ideas needed

Ignore reference to activation energy or alternative route.

1

(ii) The <u>addition of water</u> (**QoL**) to a molecule / compound **QoL- for the underlined words**

1

(iii) M1 CH₃CH=CH₂ + H₂O CH₃CH(OH)CH₃

 (C_3H_6)

For **M1** insist on correct structure for the alcohol but credit correct equations using either C₃H₆ or double bond not given.

M2 propan-2-ol

[8]

2

M3.(a) H OR hydrogen OR H

Ignore brackets ignore dot penalise + or – charge

1

(b) CH₃ **OR** methyl **OR** CH₃ **OR** CH₃ Ignore brackets ignore dot penalise + or – charge

1

(c) Either order

C₂H₅ **OR** ethyl **OR** CH₃CH₂ **OR** C₂H₅ Ignore brackets ignore dot penalise + or – charge

1

CHO OR HCO OR COH OR H-C=O

1

(d) I A 1 II C 1 III D 1 IV B 1 M4. (a) The molecular ion is The molecule with one/an electron knocked off/lost Ignore the highest or biggest m/z peak OR The molecule with a (single) positive charge OR the <u>ion</u> with/it has the largest/highest/biggest <u>m/z</u> (value/ratio) Ignore "the peak to the right" OR the <u>ion</u> with/it has an m/z equal to the M_r Ignore "compound" 1 (b) (i) 2(14.00307) + 15.99491 = 44.00105A sum is needed to show this 1

[8]

(ii) Propane/C₃H₈ and carbon dioxide/CO₂ (and N₂O) or they or both the gases/molecules or all three gases/molecules have an (imprecise) M₁ of 44.0 (OR 44)

OR

they have the same M, or molecular mass (to one d.p)

This could be shown in a calculation of relative masses for propane and carbon dioxide

1

(iii) By definition

OR

The <u>standard/reference</u> (value/isotope)

Ignore "element"
Ignore "atom"

1

(c) (i) M1 (could be scored by a correct mathematical expression)

 $\Delta H = \Sigma \Delta H_{products} - \Sigma \Delta H_{reactants}$

OR a correct cycle of balanced equations

M1 and M2 can be scored with correct moles as follows

$$\Delta H$$
 + 2(-46) = +82 + 3(-286)

 $\Delta H - 92 = -776$

 $\Delta H = 92 - 776 \text{ OR } 92 + 82 - 858$

M3

 $\Delta H = -684$ (kJ mol⁻¹) (This is worth 3 marks)

Award 1 mark ONLY for + 684

Full marks for correct answer.

Ignore units.

Deduct one mark for an arithmetic error.

3

(ii) The value is quoted at a pressure of 100 kPa OR 1 bar or 10⁵ Pa

OR

<u>All reactants and products</u> are in their <u>standard states/their normal</u> <u>states at 100 kPa or 1 bar</u>

Ignore 1 atmosphere/101 kPa Ignore "constant pressure"

1

[8]