M1.		(a)	(i) Z (1)	1	
	4.	(ii)	Collisions (1) Cause some molecules to slow down or lose energy (1)	2	
	(b)	Cui	rve starts at origin and is displaced to the right (1)		
		Cur	rve lower and does not touch energy axis (1)	2	
	(c)	(i)	Only a small percentage/very few collisions have $E > E_a$ (1)	1	
		(ii)	Add a catalyst (1)		
			Lowers E_a (1)		
			More collisions/molecules have energy $> E_a$ (1)	3	[9]
M2.		(a) Peak lower		1	
		and	d moved to right	1	
		star	rt at the origin and curve crosses once only	1	
	(b)	(i)	(Rate of reaction) <u>increases</u>	1	
			(At a higher temperature) more molecules/particles have the minimum energy needed to react/have activation	1	
			energy/have successful collisions		
			Mark CE if incorrect effect given		

2

	(ii)	(Rate	e of re	eaction) <u>increases</u>	1	
		lowe	ers act	ivation energy	1	
		so th		ore molecules are able to react a CE if incorrect effect given	1	[9]
M3. C						
						[1]
M4. B						[1]
M5.	(a)	(i)	M1	The peak of the new curve is displaced to the right.		
		M2	All c	f the following are required		
		•	The	new curve starts at the origin		
		•	The	peak of the new curve is <u>lower</u> than the original		
		•	<u>and</u>	the new curve only crosses the original curve once		
		•	corre	an attempt has been made to draw the new curve ectly towards the energy axis but not to touch the nal curve		
		•		new curve must not start to diverge from the original curve s low demand		

M2 is higher demand.

	(ii)	M1	Increase in the number/proportion of molecules with $E \ge E_{a}$		
		OR	more molecules have $E \ge E_a$		
		OR	more molecules have sufficient energy to react		
		M2	More effective/productive/successful collisions Ignore "molecules have more energy" Ignore "more energetic collisions" Ignore "molecules gain activation energy" Ignore "more collisions" Accept "particles" for "molecules" but NOT "atoms" Ignore "chance of collision"; this alone does not gain M2	2	
(b)	(i)	Iron	o OR Fe	1	
	(ii)	M1	Catalysts provide an alternative route/pathway/mechanism		
		OR			
		(in th	in this case) surface adsorption/surface reaction occurs. For M1, not simply "provides a surface" alone		
		M2	that has a lower activation energy		
		OR			
		lowe	For M2, the candidate may use a definition of activation energy without referring to the term	2	

[7]

M6. (a) M1 The activation energy is the minimum / least / lowest energy

Mark independently

Ignore "heat" and ignore "enthalpy"

	M2 (energy) for a reaction to occur / to go / to start					
	OR (energy) for a <u>successful / effective collision</u> <i>Ignore "breaking the bonds"</i>	2			
(b)	alterr	Catalysts provide an alternative route OR an native mechanism OR alternative / different path(way) owers the activation energy Mark independently Ignore reference to "surface"	2			
(c)	(i)	Stay(s) the same	1			
	(ii)	Increases Credit "increase" or "increased"	1			
	(iii)	Increases Credit "increase" or "increased"	1			
	(iv)	Stay(s) the same	1			
(d)	(i)	M1 yeast or zymase M2 ethanol Ignore "enzyme" In M2, ignore "alcohol" and ignore any formula	2			
	(ii)	M1 (Concentrated) H ₃ PO ₄ OR (Concentrated) H ₂ SO ₄ M2 butan-2-ol Credit correct names Ignore "hydrogenphosphate or hydrogensulfate" Ignore "dilute" or "aq" Do not penalise absence of hyphens in name. In M2, ignore any formula	2			

M7 .(a)	Number / proportion / percentage / fraction of molecules						
. ,	lanore "particles"						

1

(b) None **OR** no effect **OR** no change

1

(c) X

1

(d) Answers in either order

M1 collision OR collide

Mark independently

M2 collision / molecules / particles

Ignore "correct" amount of energy

with the activation energy

OR with $E \ge E_{act}$

OR with sufficient /enough energy

OR with the <u>minimum</u> energy

OR with the correct orientation

2

(e) A small increase in temperature results in <u>many more / much higher proportion of / a lot more / significantly more molecules / particles / collisions</u> with <u>E ≥ E_{sct} / energy greater than the activation energy / sufficient energy / enough energy / minimum energy to react</u>

(compared with a small increase in concentration)

Not just "more molecules with $E \ge E_{act}$ "

The answer must convey that the increase is $\ensuremath{\textit{significant}}$

Accept reference to "atoms", "molecules", "particles"

1

M8.(a) Amount / number / proportion / percentage / fraction / moles of molecules / particles

Penalise an incorrect qualification of the number eg NOT number of molecules with E greater than Ea.

Not 'atoms'.

1

(b) There are no molecules / particles with zero energy

OR

All of the molecules / particles are moving / have some energy *Not 'atoms'*.

The answer should relate the energy to the molecules.

1

(c) **C** (The most probable energy)

1

(d) **M1** The peak of the new curve is <u>displaced to the right</u> and <u>lower</u> than the original

M2 All of the following needed

- The new curve starts at the origin and should begin to separate from the original almost immediately
- and the new curve only crosses the original curve once
- <u>and</u> the total area under the new curve is <u>approximately</u> the same as the original
- <u>and</u> an attempt has been made to draw the new curve correctly towards the axis <u>above the original curve</u> but not to touch the original curve

2

(e) None / no effect / stays the same

[6]

1

M9.(a) M1 On the energy axis E_{mp} at the maximum of the original peak

M1 The limits for the horizontal position of E_{mp} are defined as above the word "the" in the sentence below the graph.

M2 The peak of their new curve is <u>displaced to the left and higher</u> than the original.

M3 All of the following are required

- The new curve starts at the origin and should begin to separate from the original almost immediately
- <u>and</u> the new curve crosses the original curve <u>once</u>
- and an attempt has been made to draw the new curve correctly towards the energy axis below the original curve but not to touch the original curve or the axis

3

(b) The rate of reaction decreases as the temperature decreases because

M1 A decrease in the <u>number</u> / <u>proportion</u> of <u>molecules</u> with $E \ge E_a$ OR fewer molecules have $E \ge E_a$

OR fewer molecules have sufficient / enough energy to react / decompose

In M1

Ignore "molecules have less energy".

Ignore "less energetic collisions".

Ignore "molecules do not gain activation energy".

Ignore "fewer collisions".

Credit "particles" for "molecules" but NOT "atoms".

M2 <u>Fewer effective / productive / successful collisions in a given time / given</u> period

OR fewer frequent effective / productive / successful collisions

OR lower rate of effective / productive / successful collisions

Ignore "chance of collision"; this alone does not gain M2

2