M1.(a) (i) d (block) OR D (block)

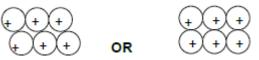
Ignore transition metals / series. Do not allow any numbers in the answer.

(ii) Contains positive (metal) ions or protons or nuclei and <u>delocalised /</u> <u>mobile / free / sea of electrons</u> *Ignore atoms.*

1

1

1


Strong attraction between them or strong metallic bonds

Allow 'needs a lot of energy to break / overcome' instead of 'strong'.

If strong attraction between incorrect particles, then CE = 0 / 2.

If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then CE=0.

(iii)

M1 is for regular arrangement of atoms / ions (min 6 metal particles). M2 for + sign in each metal atom / ion. Allow 2⁺ sign.

2

(iv) <u>Layers / planes / sheets of atoms or ions</u> can slide over one another *QoL.*

1

(b) (i) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ (4s⁰) Only.

(ii) NiCl₂.6H₂O + **6** SOCl₂ \longrightarrow NiCl₂ + **6** SO₂ + **12** HCl Allow multiples.

NaOH / NH₃ / CaCO₃ / CaO Allow any name or formula of alkali or base. Allow water.

M2.(a) <u>White</u> powder / solid / ash / smoke Ignore ppt / fumes

> Bright / white light / flame Allow glows white / glows bright

 $\begin{array}{l} Mg + H_2O \rightarrow MgO + H_2 \\ Ignore \ state \ symbols \\ Ignore \ reference \ to \ effervescence \ or \ gas \ produced \end{array}$

 (b) Mg²⁺ / magnesium ion has higher charge than Na⁺ Allow Mg²⁺ ions smaller / greater charge density than Na⁺ ions Allow Mg atoms smaller than Na (atoms) Allow magnesium has more delocalised electrons Must be a comparison Ignore reference to nuclear charge

Attracts <u>delocalised / free / sea of</u> electrons more strongly / metal–metal bonding stronger / metallic bonding stronger *Wrong type of bonding (vdW, imf), mention of molecules CE* 1

1

1

1

1

1

[9]

(c)	Structure: Macromolecular / giant molecule / giant covalent <i>Mark independently</i>	
	Bonding: Covalent / giant covalent	1
	Physical Properties:	
	Any two from: Hard/ Brittle / not malleable Insoluble Non conductor	
	Ignore correct chemical properties Ignore strong, high boiling point, rigid	2
(d)	Formula: P ₄ O ₁₀ <i>Mention of ionic or metallic, can score M1 only</i>	1
	Structure: Molecular If macromolecular, can score M1 & M3 only	1
	Bonding: Covalent / shared electron pair	1
	van der Waals' / dipole–dipole forces <u>between molecules</u> Allow vdW, imf and dipole–dipole imf but do not allow imf alone	1

1

= 0

(e) $SO_2 + H_2O \rightarrow H^+ + HSO_3^-$

Products must be ions Allow $SO_2 + H_2O \rightarrow 2H^* + SO_3^{2*}$ Allow two equations showing intermediate formation of H_2SO_3 that ends up as ions Ignore state symbols Allow multiples

(f) $P_4O_{10} + 6MgO \rightarrow 2Mg_3(PO_4)_2$

OR $P_4O_{10} + 6MgO \rightarrow 6Mg^{2+} + {}_4PO_4^{3-}$ OR $P_2O_5 + 3MgO \rightarrow Mg_3(PO_4)_2$ etc Ignore state symbols

Allow multiples

1

[15]

1

M3. (a) Antacid

OR

to neutralise acidity

OR

eases indigestion Credit suitable reference to indigestion or to laxative or to relief of constipation

1

(b) M1 Decrease in T decreases the energy of the particles/ions/H⁺/molecules

M2 (also scores M1) Decrease in the number of/less particles/ions/ H^{*}/molecules with $E \ge E_{Act}$ or $E \ge$ minimum energy to react

In **M1** and **M2**, credit "atoms" but ignore "calcium carbonate", ignore "calcium", ignore any ion formula except H⁺

M3 Few(er)/Less effective/productive/successful collisions *QoL*

(c) (i) Strontium has a higher melting point than barium, because

Correct reference to size of cations/proximity of electrons M1 (For Sr) delocalised <u>electrons closer to cations/positive</u> <u>ions/atoms/nucleus</u>

OR

cations/positive ions/atoms are smaller

OR

cation/positive ion/atom or it has fewer (electron) shells/levels

Ignore general Group 2 statements Penalise M1 if Sr or Ba is said to have <u>more or less</u> delocalised electrons Ignore reference to shielding

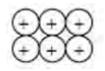
CE = **0** for reference to molecules or intermolecular forces or covalent bonds

Relative strength of metallic bonding M2 (Sr) has <u>stronger</u> attraction between the <u>cations/positive ions/</u> <u>atoms/nucleus</u> and the delocalised <u>electrons</u>

OR

stronger metallic bonding (assume argument refers to Sr but accept converse argument for Ba) 2 Ignore "Van der Waals forces (between atoms)" but penalise if "between molecules"

(ii) $Sr + 2H_2O \rightarrow Sr(OH)_2 + H_2$ Or multiples

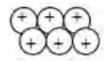

1

1

(d) $2Mg + TiCl_4 \rightarrow 2MgCl_2 + Ti$ Or multiples

[9]

(ii)



One mark for regular arrangement of particles. Can have a space between them Do not allow hexagonal arrangement

1

1

OR

Na⁺ Na⁺ Na⁺

Na[•] Na[•] Na[•] One mark for + in each Ignore electrons If it looks like ionic bonding then CE = 0/2

1
1
1

 (c) Iodide / I- bigger (ion) (so less attraction to the Na+ ion) Need comparison Do not allow iodine is a bigger atom Ignore I has one more c⁻ shell

1

M5.(a) M1 (could be scored by a correct mathematical expression

Correct answer to the calculation gains all of M1, M2 and M3

M1 $\Delta H = \Sigma \Delta H_r$ (products) $-\Sigma \Delta H_r$ (reactants) Credit 1 mark for -101 (kJ mol⁻¹)

OR a correct cycle of balanced equations

M2 = -1669 - 3(-590) = -1669 + 1770(This also scores M1)

M3 = + 101 (kJ mol⁻¹)

Award 1 mark ONLY for - 101

For other incorrect or incomplete answers, proceed as follows

• check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (**M1** and **M2**)

• If no AE, check for a correct method; this requires either a correct cycle with 3Sr <u>and</u> 2AI OR a clear statement of **M1** which could be in words and scores <u>only M1</u>

M4 - Using powders

Any **one** from

- To increase collision frequency / collisions in a given time / rate of collisions
- To increase the surface contact / contact between the solids / contact between (exposed) particles

Ignore dividing final answer by 3 Penalise **M4** *for reference to molecules.*

5

M5 Major reason for expense of extraction Any one from

Aluminium is extracted by electrolysis **OR** aluminium extraction uses

(large amounts of) <u>electricity</u>

- Reaction / process / It / the mixture requires heat
- It is endothermic
- (b) Calcium has a higher melting point than strontium, because *Ignore general Group 2 statements.*

Correct reference to size of cations / proximity of electrons M1 (For Ca) delocalised <u>electrons closer to cations / positive ions / atoms /</u> <u>nucleus</u> *OR* cations / positive ions / atoms are smaller

OR cation / positive ion / atom or it has fewer (electron) shells / levels

Penalise **M1** if either of Ca or Sr is said to have <u>more or less</u> delocalised electrons OR the same nuclear charge. Ignore reference to shielding.

Relative strength of metallic bonding M2 (Ca) has <u>stronger</u> attraction between the <u>cations / positive ions / atoms /</u> <u>nucleus</u> and the <u>delocalised electrons</u> *OR* <u>stronger metallic</u> bonding

(assume argument refers to Ca but credit converse argument for Sr)

CE= 0 for reference to molecules or Van der Waals forces or intermolecular forces or covalent bonds.

(c) M1 2Mg + O₂ → 2MgO

M2 Mg + $2H_2O \longrightarrow Mg(OH)_2 + H_2$ Credit multiples of the equations.

> M3 Magnesium hydroxide is used as an antacid / relieve indigestion (heartburn) / neutralise (stomach) acidity / laxative Not simply "milk of magnesia" in M3

3

1

- (ii) Decreases
- (iii) Increases
- (b) Calcium has a higher melting point than strontium, because
 CE = 0 for reference to molecules or intermolecular forces or covalent bonds

Correct reference to size of cations/proximity of electrons

- M1 (For Ca) delocalised <u>electron(s) closer to cations / positive ions / nucleus</u> Ignore "Van der Waals forces (between atoms)" but penalise if between "molecules"
 - OR cations / positive ions / atoms are smaller
 - *OR* <u>cation / positive ion / atom or it has fewer (electron) shells / levels</u> Ignore general Group 2 statements Answers must be specific

Relative strength of metallic bonding

M2 (For Ca) has <u>stronger</u> attraction between the <u>cations / positive ions / nucleus</u> and the <u>delocalised electron(s)</u> Penalise M1 if Ca or Sr is said to have <u>more or less</u> delocalised electrons

OR

stronger metallic bonding

(assume argument refers to Ca but accept converse argument for Sr) Ignore reference to shielding

2

(c) (i) Sulfuric acid / it contains sulfate ions / SO₄²⁻

OR

Do not penalise an <u>additional</u> but incorrect formula for sulfate ion.

<u>Sulfuric acid</u> would form a (white) <u>precipitate</u> If only the formula of the sulfate ion is given, it must be correct

(ii) Ba²⁺ + SO₄²⁻ → BaSO₄ ONLY
 Ignore state symbols
 No multiples

1

[7]