M1. (a) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
Allow x in place of n
(b)

Chain

Must show every bond
Allow branched chain
(c) $\mathrm{C}_{9} \mathrm{H}_{20}$

Only

To break the (C-C and/or $\mathrm{C}-\mathrm{H}$) bonds
$M 2=0$ if break $C=C$

To make products which are in greater demand / higher value / make alkenes

Not more useful products
Allow specific answers relating to question
(d) $\mathrm{C}_{5} \mathrm{H}_{12}+3 \mathrm{O}_{2} \rightarrow 5 \mathrm{C}+6 \mathrm{H}_{2} \mathrm{O}$

Allow other balanced equations which give C and $\mathrm{CO} / \mathrm{CO}_{2}$

Causes global dimming / exacerbates asthma / causes breathing problems / makes visibility poor / smog

Apply list principle
(e) $\frac{106.5}{143}(x 100)$
74.48\%

Allow 74.5\%

3
Only
(f) 2,3-dichloro-3-methylpentane
$\underline{C}_{3} \mathrm{H}_{6} \mathrm{Cl}$
Only

M2. (a) (i) single (C-C) bonds only/no double ($\mathrm{C}=\mathrm{C}$) bonds
Allow all carbon atoms bonded to four other atoms
Single C-H bonds only $=0$
$C=H C E$
C and H (atoms) only/purely/solely/entirely
Not consists or comprises
Not completely filled with hydrogen
CH molecules $=\mathrm{CE}$
Element containing C and $H=C E$
(ii) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$

Formula only
(b) (i) $\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Accept multiples
Ignore state symbols
(ii) gases produced are greenhouse gases/contribute to Global warming/effect of global warming/climate change

Allow CO_{2} or water is greenhouse gas/causes global warming
Acid rain/ozone $C E=0$
(c) carbon

Allow C
Allow soot
(d) (i) $\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{C}_{4} \mathrm{H}_{8}$

OR

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+2 \mathrm{C}_{2} \mathrm{H}_{4} \\
& \text { Accept multiples }
\end{aligned}
$$

(ii) Plastics, polymers

Accept any polyalkene/haloalkanes/alcohols
(iii) so the bonds break $O R$ because the bonds are strong

IMF mentioned $=0$
(e) (i) 1,4-dibromo-1-chloropentane/1-chloro-1,4-dibromopentane Ignore punctuation

(ii) Chain/position/positional

Not structural or branched alone

1

M3. (a) Single bonds only /no double or multiple bonds;

Contains carbon and hydrogen only;
C and H only
not C and H molecules

Alkanes;
(b) (1) Fractions or hydrocarbons or compounds have different boiling points/ separation depends on bp;

Ignore $m p$ and $v d w$
(2) bp depends on size/ $M_{/} /$chain length;

If refer to bond breaking/cracking/ blast furnace/oxygen/air 2
max
(3) Temp gradient in tower or column / cooler at top of column or vice versa;

QWC
(4) Higher bp / larger or heavier molecules at bottom (of column) or vice versa;

Not increasing size of fraction
Not gases at top
(c) Large molecules or compounds or long chain hydrocarbons (broken) into smaller molecules or compounds or smaller chain hydrocarbons;

QWC

Zeolite or aluminosilicate (catalyst);

$$
\begin{gathered}
\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{6} \mathrm{H}_{12} ; \\
\text { Only }
\end{gathered}
$$

Smaller chain molecules are in more demand or have higher value or vice versa;

Insufficient to say more useful/have more uses
(d) $\mathrm{C}_{8} \mathrm{H}_{18}+81 / 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$;

Allow multiples
$\mathrm{Rh} / \mathrm{Pd} / \mathrm{Pt} / \mathrm{lr}$ or in words;
Penalise contradiction of name and symbol
$2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2} / 2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} ;$
Allow multiples

Greenhouse gas/ absorbs infrared radiation;
(e) car less powerful/ car stops/ reduced performance/ won't run smoothly/ can't accelerate;

Not incomplete combustion or bad effect on engine
Not doesn't go as far.

Test it (before sale) /Quality control etc;
(f) (compounds with) same molecular formula / same no and type of atoms;

Not atoms/elements with same molecular formula.
If same chemical formula, can allow M2

And different structure/ structural formula;
M2 consequential on M1
Allow displayed formula for M2

2,2,4-trimethylpentane;

Only (but allow numbers in any order)

M4. (a) (i) fractional distillation or fractionation
(ii) $\mathrm{C}_{9} \mathrm{H}_{20}$ only
(iii) $\mathrm{C}_{11} \mathrm{H}_{24}+17 \mathrm{O}_{2} \rightarrow 11 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{C}_{11} \mathrm{H}_{24}+6 \mathrm{O}_{2} \rightarrow 11 \mathrm{C}+12 \mathrm{H}_{2} \mathrm{O}$
(b) (i) $\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{7} \mathrm{H}_{16}$
(ii) correctly drawn structure of methylpropene (insist on clearly drawn $C-C$ and $C=C$ bonds)
(c) Any two from
o chemically similar or chemically the same or react in the same way
o same functional group
o same general formula

- differ by CH_{2}
(penalise same molecular formula or same empirical formula)

