M1.(a) Reagent

Acidified K₂Cr₂O₇

Acidified KMnO₄

I₂ / NaOH

Named

RCOOH with HCl or H₂SO₄

Named RCOCI

Allow names including potassium permanganate Wrong or no reagent CE = 0

P (ketone)

no reaction

no reaction

Yellow ppt

no reaction

no reaction

Penalise incorrect formulae or incomplete reagent, such as $K_2Cr_2O_7$ or acidified dichromate, but mark on.

S (2° alcohol) (orange to) green (purple to) colourless no reaction

fruity or sweet smell

Misty fumes

sty fulfics

Allow no change or nvc but penalise <u>nothing or no observation</u>

If 2 reagents added sequentially or 2 different reagents used for P and S then CE = 0

(b) Tollens' silver mirror / solid

1

1

1

	Fehling's / Benedicts red ppt		1
(c)	G P If not P then no marks for clip		
	5 OR five		1
(d)	C ₄ H ₁₂ Si Must be molecular formula		
	Wrong substance CE = 0 for clip		1
	 One or single peak OR all (four) carbon atoms are equivaled environment upfield from others or far away from others or far to right non toxic OR inert low boiling point or volatile or easy removed from sample Ignore and don't credit single peak linked to 12 equivalent or has a peak at δ = 0 but use list principle for wrong statements 		1 1 1
(e)	Figure 1 is R If not R cannot score M2		-
		M1	1
	90-150 (ppm) or value in range is (two peaks for) C = C / alkene	M2	
	Figure 2 is T If not T cannot score M4 or M5		1
		M3	1
	50-90 (ppm) or value in range is C—O or alcohol or ether		1
	··· /	M4	

M5

1

1

1

(f)

Answers include

because V must be an isomer of S

[17]

M2.6 / six

[1]

M3.(a) (i) Single / one (intense) peak / signal *OR* all H or all C in same environment *OR* 12 equiv H or 4 equiv C

Do not allow non-toxic or inert (both given in Q)

Any 2 from three Ignore peak at zero

OR

Upfield / to the right of (all) other peaks *OR* well away from others *OR* doesn't interfere with other peaks

Ignore cheap Ignore non-polar

OR

Low bp **OR** volatile **OR** can easily be removed Ignore mention of solubility

2

1

Ignore any group joined on other side of CO Ignore missing trailing bond Ignore charges

1

Ignore any group joined on other side of -O-Ignore missing trailing bond Ignore charges as if MS fragment

$$-$$
O $-$ CH $_2$ $-$ CH $_2$ $-$ C $-$ Or with sticks (iii)

Ignore missing trailing bonds
Ignore charges as if MS fragment

1

1

1

1

1

$$CH_3-CH_2-O-CH_2-CH_2-C-CH_3$$
 (iv)

(c) (i) Check structure has 6 carbons

Allow (CH₃)₃CCOOCH₃ or (CH₃)₃CCO₂CH₃

Allow CH₃COOC(CH₃)₃ or CH₃CO₂C(CH₃)₃

(ii) Check structure has 6 carbons

Allow (CH₃)₂CHCH(CH₃)COOH or (CH₃)₂CHCH(CH₃)CO₂H Penalise C₃H₇

(iii) Check structure has 6 carbons

Page 6

[11]

1

M4.(a) (i) CDCl₃ or CD₂Cl₂ or C₆D₆ or CCl₄ Not D₂O Allow CD₃Cl

1

(ii) 4 or four

1

(iii) Triplet or 3 or three

1

(iv) <u>1,4-dichloro-2,2-dimethylbutane</u>

Do not penalise different or missing punctuation or extra spaces.

Spelling must be exact and order of letters and numbers as here.

1

(b) (i) 3 or three

(ii) 190-220 (cm⁻¹)

Allow a single number within the range.

OR a smaller range entirely within this range.

(iii) hexane-2,5-dione

Do not penalise different or missing punctuation or extra spaces.

Spelling must be exact and order of letters and numbers as here.

NB so must have middle e

[7]

1

1

M5.IR

Extended response

Absorption at 3360 cm⁻¹ shows OH alcohol present

Deduction of correct structure without explanation scores maximum of 4 marks as this does not show a clear, coherent line of reasoning.

M1

1

NMR

There are 4 peaks which indicates 4 different environments of hydrogen

Maximum of 6 marks if no structure given OR if coherent logic not displayed in the explanations of how two of OH, CH_3 and CH_2CH_3 are identified.

M2

1

The integration ratio = 1.6 : 0.4 : 1.2 : 2.4

The simplest whole number ratio is 4:1:3:6

M3

The singlet (integ 1) must be caused by H in OH alcohol

M4

1

The singlet (integ 3) must be due to a CH₃ group with no adjacent H

M5

1

Quartet + triplet suggest CH₂CH₃ group

M6

1

Integration 4 and integration 6 indicates two equivalent CH₂CH₃ groups

M7

1

$$H_3C$$
— C — OH

$$CH_2CH_3$$

$$M8$$
1

1

1

M6.(a) M1 Ester 1

If Ester 2, can score M3 only.

When marking M2 and M3, check any annotation of structures in the stem at the top of the page.

Page 9

	M3	(δ = 4.1 peak is) quartet as <u>adjacent / next to / attached to CH</u> ₃	1
	M4	Other spectrum quartet at δ = 2.1-2.6 (or value in this range)	1
(b)	M1	Quaternary (alkyl) ammonium salt / bromide	1
	M2	CH₃Br or bromomethane Penalise contradictory formula and name.	1
	M3	Excess (CH₃Br or bromomethane) Mention of acid eg H₂SO₄ OR alkali eg NaOH loses both M2 and M3.	1
	M4	Nucleophilic substitution Can only score M3 if reagent correct. Ignore alcohol or ethanol (conditions) or Temp.	1
(c)			
		Bromine Acidified KMnO₄ (penalise Br but mark on) (Penalise missing acid but mark on)	
		Wrong reagent = no marks. If bromine colour stated it must be red, yellow, orange, brown or any combination, penalise wrong starting colour.	1

Benzene	no reaction / c	no reaction / colour
	olour remains	remains / no (visible)

Page 10

/ no (visible)	change
change	

Ignore 'clear', 'nothing'.

Allow colour fades slowly.

Allow 'nvc' for no visible change.

1

cyclohexene (Bromine) (Acidified KMnO₄) decolourised decolourised	,	` ,	(Acidified KMnO₄) decolourised
---	---	-----	-----------------------------------

[11]

M7.C

[1]