M1.(a) (i) (nucleophilic) addition-elimination
Not electrophilic addition-elimination Ignore esterification

M3 for structure

- If wrong nucleophile used or O-H broken in first step,
can only score M2.
- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses $M 2$.
- If Cl lost with C=O breaking lose M2.
- M3 for correct structure with charges but lone pair on O
is part of M4.
- Only allow M4 after correct / very close M3.
- Ignore HCl shown as a product.
a 20-50 (ppm) or single value or range entirely within this range If values not specified as a or b then assume first is a.
b $\quad 50-90(\mathrm{ppm})$ or single value or range entirely within this range
(ii)

Must have trailing bonds, but ignore n.
OR $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\quad$ OR $\quad-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}_{-}$ Allow

but not $\quad-\mathrm{C}_{4} \mathrm{H}_{8-}$ one unit only
Condensation
(b)

	Tollens'	Fehling's / Be nedicts	Acidified potassium dichromate

Penalise wrong formula for Tollens or missing acid with potassium dichromate but mark on.

\boldsymbol{J}	No reaction / no (visible) change / no silver mirror	No reaction / no (visible) change / stays blue / no red ppt	No reaction / no (visible) change / stays orange / does not turn green

Ignore 'clear', 'nothing'.
Penalise wrong starting colour for dichromate.

\boldsymbol{K}	Silver mirror $/$ grey ppt	Red ppt (allow brick red or red-orange)	(orange) turns green

Allow trough, peak, spike.

K Four (peaks)
Ignore details of splitting.
If values not specified as J or K then assume first is J.
(c) If all the structures are unlabelled, assume that the first drawn ester is L, the second ester is M; the first drawn acid is N, the second P. The cyclic compound should be obvious.

L

ester

OR $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$
All $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{O}_{2} L$ to P must have $\mathrm{C}=\mathrm{C}$.
Allow CH_{3} -
Allow $-\mathrm{CO}_{2} \mathrm{CH}_{3}$ etc.
Allow $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$.

M

ester

OR

OR

$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OOCH}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHOOCH}$

Allow either $\mathrm{E}-\mathrm{Z}$ isomer.
Allow CH_{3} - or $\mathrm{C}_{2} \mathrm{H}_{5}$ - but not $\mathrm{CH}_{2} \mathrm{CH}_{3}$ -
Allow $\mathrm{CH}_{3} \mathrm{CHCHCOOCH}_{3}$ etc.
acid

OR

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCOOH}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{COOH}) \mathrm{CH}_{2} \mathrm{C}$
H_{3}
Allow CH_{3} - or $\mathrm{C}_{2} \mathrm{H}_{5}$ - but not $\mathrm{CH}_{2} \mathrm{CH}_{3}$ -
Allow $-\mathrm{CO}_{2} \mathrm{H}$.
Not cyclic isomers.
Not the optically active isomer.

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCHCOOH}$ etc.

P
acid

Q

OR
 OR

Not cyclic esters.

M2.(a) \boldsymbol{F}	\boldsymbol{G}

Penalize $-\mathrm{O}_{2} \mathrm{~N}$ once
Penalise missing circle once
Don't penalise attempt at bonding in NO_{2}

(b) \mathbf{H}	J

If both \mathbf{H} and \mathbf{J} correct but reversed, award one mark

A carbon in saturated ring structures should be shown as

Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ but
NOT allow $\mathrm{C}_{4} \mathrm{H}_{9}$ or $\mathrm{C}_{3} \mathrm{H}_{7}$

1

1
[8]

(NO mark for name of mechanism)

- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses $M 2$
- If Cl lost with $\mathrm{C}=\mathrm{O}$ breaking, max1 for M1
- M3 for correct structure with charges but Ip on
$0 \quad$ is part of M4
- only allow M4 after correct/very close M3
- ignore Cl^{-}removing H^{+}
(b) (i) pentane-1,5-diol

Second 'e' and numbers needed
Allow 1,5-pentanediol but this is not IUPAC name
(ii)

Must show ALL bonds
(iii) All three marks are independent
M1 (base or alkaline) Hydrolysis (allow close spelling)

1

Allow (nucleophilic) addition-elimination or saponification
M2 $\underline{\delta+C}$ in polyester

M3 reacts with OH or hydroxide ion

Not reacts with NaOH
(c) (i) OH

Allow $\mathrm{CH}_{3} \mathrm{COOH}$ or $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(ii) (nucleophilic) addition-elimination

Both addition and elimination needed and in that order OR
(nucleophilic) addition followed by elimination
Do not allow electrophilic addition-elimination / esterification Ignore acylation
(iii) any two from: ethanoic anhydride is

- less corrosive
- less vulnerable to hydrolysis
- less dangerous to use,
- less violent/exothermic/vigorous reaction OR more controllable rxn
- does not produce toxic/corrosive/harmful fumes (of HCl) OR does not produce HCl
- less volatile

NOT COST
List principle beyond two answers

(d)

Allow

(e) (i) ester

Do not allow ether
Ignore functional group/linkage/bond
(ii) 12 or twelve (peaks)
(iii) 160-185

Allow a number or range within these limits
Penalize extra ranges given
Ignore units

(f) (i) sulfuric acid	sodium hydroxide	\checkmark
hydrochloric acid	ammonia	X or blank
ethanoic acid	potassium hydroxide	\checkmark
nitric acid	methylamine	X or blank

$$
\begin{array}{ll}
4 \text { correct } & \text { scores } 2 \\
3 \text { correct } & \text { scores } 1 \\
2 \text { or } 1 \text { correct } & \text { scores } 0
\end{array}
$$

(ii) Pink to colourless

Allow 'red' OR 'purple' OR 'magenta' instead of 'pink'
Do not allow 'clear' instead of 'colourless'
1
[21]

M4.(a) (i) Single / one (intense) peak / signal OR all H or all C in same environment $\mathbf{O R}$ 12 equiv H or 4 equiv C

Do not allow non-toxic or inert (both given in Q)
Any 2 from three
Ignore peak at zero
OR
Upfield / to the right of (all) other peaks OR well away from others OR doesn't interfere with other peaks

Ignore cheap
Ignore non-polar

OR

Low bp OR volatile OR can easily be removed Ignore mention of solubility
(ii)

Allow Si($\left.\mathrm{CH}_{3}\right)_{4}$
(b) (i)

Ignore any group joined on other side of CO Ignore missing trailing bond Ignore charges
(ii)

Ignore any group joined on other side of -Olgnore missing trailing bond lgnore charges as if MS fragment
(iii)

Ignore missing trailing bonds Ignore charges as if MS fragment
(iv)

(c) (i) Check structure has 6 carbons

Allow $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}$ or $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{CH}_{3}$

Allow $\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$ or $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
(ii) Check structure has 6 carbons

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{H}$ Penalise $\mathrm{C}_{3} \mathrm{H}_{7}$
(iii) Check structure has 6 carbons

OR

Allow

