M1.(a) (i) (nucleophilic) <u>addition-elimination</u>

Not electrophilic addition-elimination Ignore esterification

 H_2 C H_2 C

M3 for structure

- If wrong nucleophile used or O–H broken in first step, can only score M2.
- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than δ+ on C=O loses M2.
- If CI lost with C=O breaking lose M2.
- M3 for correct structure <u>with charges</u> but lone pair on O is part of M4.
- Only allow M4 after correct / very close M3.
- Ignore HCl shown as a product.

a 20-50 (ppm) or single value or range entirely within this range If values not specified as a or b then assume first is a.

b 50-90 (ppm) or single value or range entirely within this range

Must have trailing bonds, but ignore n.

1

4

1

1

OR
$$-OCH_2CH_2CH_2CO-$$
 OR $-CH_2CH_2CH_2CO-$ Allow $-O-(CH_2)_4--C 0$ but not $-C_4H_8-$ one unit only

Condensation

(b)

	Acidified potassium dichromate
--	--------------------------------

Penalise wrong formula for Tollens or missing acid with potassium dichromate but mark on.

1

1

	No reaction / no (visible) change / no silver mirror		No reaction / no (visible) change / stays orange / does not turn green
--	--	--	--

Ignore 'clear', 'nothing'.

Penalise wrong starting colour for dichromate.

1

K	Silver <u>mirror</u> / grey <u>ppt</u>	Red <u>ppt</u>	(orange) turns green	
	3 · , <u>, , , , , , , , , , , , , , , , , </u>	(allow brick red or red-orange)		

1

J Two (peaks)

1

K Four (peaks)

Ignore details of splitting.

If values not specified as J or K then assume first is J.

1

(c) If all the structures are unlabelled, assume that the first drawn ester is L, the second ester is M; the first drawn acid is N, the second P. The cyclic compound should be obvious.

L ester

OR H₂C=C(CH₃)COOCH₃

All C₅H₈O₂ L to P must have C=C.

Allow CH3-.

Allow -CO₂CH₃ etc.

Allow CH₂C(CH₃)COOCH₃.

1

M ester

$$H_3C$$
 $C=C$ $COOCH_3$ H_3C $C=C$ $OOCCH_3$ H_3C $C=C$ $COOCH_3$ COO

CH₃CH=CHCOOCH₃ CH₃CH=CHOOCCH₃ CH₃CH=C(CH₃)OOCH

$$C=C$$
 CH_2OOCH
 CH_3CH_2
 $C=C$
 $C=C$

CH₃CH=CHCH₂OOCH

CH₃CH₂CH=CHOOCH

Allow either E-Z isomer.

Allow CH₃- or C₂H₅₋ but not CH₂CH₃-.

Allow CH₃CHCHCOOCH₃ etc.

N acid

$$H_3C$$
 $C=C$ H $C=C$ CH_2COOH CH_2COOH CH_2CH_3 CH_2CH_3

(CH₃)₂C=CHCOOH

 $H_2C=C(CH_3)CH_2COOH$

 $H_2C=C(COOH)CH_2C$

 H_3

Allow CH₃- or C₂H₅₋ but not CH₂CH₃-.

Allow −CO₂H.

Not cyclic isomers.

Not the optically active isomer.

Allow (CH₃)₂CCHCOOH etc.

1

P acid

Allow -CO₂H.

CH₃CH(COOH)CH=CH₂

Allow CH₃CH(CO₂H)CHCH₂ or CH₃CH(CO₂H)C₂H₃.

1

Q

Not cyclic esters.

[19]

Penalize −O₂N once
Penalise missing circle once
Don't penalise attempt at bonding in NO₂

1

1

(b) H	J
H ₃ C CH ₃	
H₃C CH₃	

If both H and J correct but reversed, award one mark

1

1

A carbon in saturated ring structures should be shown as

Allow C₂H₅ but NOT allow C₄H₉ or C₃H₇

[8]

1

1

$$(CH_3CH_2) \longrightarrow CH_3CH_2 \longrightarrow CH_3CH_$$

M3.(a) methyl propanoate

(NO mark for name of mechanism)

- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than δ + on C=O loses M2
- If CI lost with C=O breaking, max1 for M1
- M3 for correct structure <u>with charges</u> but Ip on
- O is part of M4
- only allow M4 after correct/very close M3
- ignore CI⁻ removing H⁺

(b) (i) pentan<u>e</u>-<u>1,5</u>-diol

Second 'e' and numbers needed
Allow 1,5-pentanediol but this is not IUPAC name

Must show ALL bonds

(iii) All three marks are independent

M1 (base or alkaline) Hydrolysis (allow close spelling)

1

1

Allow (nucleophilic) addition-elimination or saponification

M2 <u>δ+ C</u> in polyester

1

M3 reacts with OH or hydroxide ion

1

Not reacts with NaOH

1

Allow CH₃COOH or CH₃CO₂H

1

(ii) (nucleophilic) addition-elimination

Both addition and elimination needed and in that order

OR

(nucleophilic) addition followed by elimination Do **not** allow electrophilic addition-elimination / esterification Ignore acylation

1

- (iii) any two from: ethanoic anhydride is
 - less corrosive
 - less vulnerable to hydrolysis
 - less dangerous to use,
 - less violent/exothermic/vigorous reaction OR more controllable rxn
 - does not produce toxic/corrosive/harmful fumes (of HCI) OR does not produce HCI
 - less volatile

NOT COST

List principle beyond two answers

2

Allow

1

(e) (i) ester

Do **not** allow ether Ignore functional group/linkage/bond

1

(ii) 12 or twelve (peaks)

(iii) 160 – 185

Allow a number or range within these limits Penalize extra ranges given Ignore units

(f)	(i) sulfuric acid	sodium hydroxide	✓
	hydrochloric acid	ammonia	X or blank
	ethanoic acid	potassium hydroxide	✓
	nitric acid	methylamine	X or blank

4 correct scores 2
3 correct scores 1
2 or 1 correct scores 0

2

1

1

(ii) Pink to colourless

Allow 'red' OR 'purple' OR 'magenta' instead of 'pink' Do **not** allow 'clear' instead of 'colourless'

[21]

M4.(a) (i) Single / one (intense) peak / signal **OR** all H or all C in same environment **OR** 12 equiv H or 4 equiv C

Do not allow non-toxic or inert (both given in Q)

Any 2 from three Ignore peak at zero

OR

Upfield / to the right of (all) other peaks **OR** well away from others **OR** doesn't interfere with other peaks

Ignore cheap Ignore non-polar Low bp **OR** volatile **OR** can easily be removed Ignore mention of solubility

2

Allow Si(CH₃)₄

1

Ignore any group joined on other side of CO Ignore missing trailing bond Ignore charges

1

Ignore any group joined on other side of -O-Ignore missing trailing bond Ignore charges as if MS fragment

1

Ignore missing trailing bonds
Ignore charges as if MS fragment

1

$$CH_3-CH_2-O-CH_2-CH_2-C-CH_1$$
 (iv) O

1

(c) (i) Check structure has 6 carbons

Allow (CH₃)₃CCOOCH₃ or (CH₃)₃CCO₂CH₃

O CH₃ || | H₃C—C—O—C—CH₃ | CH₃

Allow CH₃COOC(CH₃)₃ or CH₃CO₂C(CH₃)₃

(ii) Check structure has 6 carbons

(iii) Check structure has 6 carbons

OR

[11]

1

1