M1. (a) A

allow $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

must show $C=C$
Penalise sticks once per pair
(b) $\mathrm{C} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

NOT cyclopentane which is only $C_{5} H_{10}$
Penalise sticks once per pair
(c) $\mathrm{E} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$

Allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{3}$
F $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
Allow $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
Penalise sticks once per pair
(d) G

allow $\mathrm{C}_{3} \mathrm{H}_{7}$ allow $\mathrm{C}_{3} \mathrm{H}_{7}$
allow $\mathrm{C}_{2} \mathrm{H}_{5}$ not $C_{5} H_{11}$ nor $C_{4} H_{9}$ Penalise sticks once per pair
H

allow $\mathrm{C}_{2} \mathrm{H}_{5}$
(e) 1

allow $\mathrm{C}_{2} \mathrm{H}_{5}$

$\mathrm{NOT}_{3} \mathrm{H}_{7}$
Penalise sticks once per pair

M2. (a) GLC or distillation
(b) $\quad \mathrm{C}=\mathrm{O}$
(c) (i) Cl has two isotopes
(ii) $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}}=\mathrm{O}$

$$
\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{ClO}^{+} \rightarrow \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}}=\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}
$$

(d) (i) e.g. CDCl_{3} or CCl_{4}
(ii) $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$
(e) 0 and 3
(f)

(g) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCl}$

M3. (a) chromatography (allow GLC TLC GC HPLC) allow any qualification
(b) 5
(c) Use of excess air/oxygen or high temperature (over $800^{\circ} \mathrm{C}$) or remove chlorine-containing compounds before incineration
(d) (i) $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ allow $\mathrm{SiC}_{4} \mathrm{H}_{12}$ allow displayed formula and do not penalise sticks Not TMS
(ii) 3

1

M4.(a) OH alcohols
(b) (i) 2.6

Ignore any group on RHS
Must clearly indicate relevant two H on a C next to $\mathrm{C}=\mathrm{O}$
On LHS, penalise H or CH or CH_{2} or CH_{3}
Ignore missing trailing bonds or attached R groups
(ii) 2.2

Ignore all groups on RHS
Must clearly indicate relevant three H on C next to $C=O$ Ignore missing trailing bonds or attached R group
(iii) 1.2

Or in words: two equivalent CH_{3} groups
Must clearly indicate two equivalent methyl groups.
Penalise attached H
Ignore missing trailing bonds or attached R groups
1
(iv)

1

M5. (a) (i) Single reagent
If wrong single reagent, $\mathrm{CE}=$ zero
Incomplete single reagent (e.g. carbonate) or wrong formula (e.g. NaCO_{3}) loses reagent mark, but mark on

For "no reaction" allow "nothing"
Different reagents
If different tests on E and F ; both reagents and any follow on chemistry must be correct for first (reagent) mark.
Reagent must react: i.e. not allow Tollens on G (ketone) - no reaction. Second and third marks are for correct observations.
i.e. for different tests on E and F , if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.
$\mathrm{PCl}_{5} \mathrm{PCl}_{3}$
SOCl_{2}

E ester

$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate
metal e.g.Mg
no reaction
no reaction
named indicator
no effect
No reaction

F acid
$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate
Effervescence or CO_{2}
metal e.g.Mg
Effervescence or H_{2}
named indicator
acid colour
fumes
(ii) Single reagent

If wrong single reagent, CE = zero
Incomplete single reagent (e.g. carbonate) or wrong
formula (e.g. NaCO_{3}) loses reagent mark, but mark on
For "no reaction" allow "nothing"
Different reagents
If different tests on E and F; both reagents and any
follow on chemistry must be correct for first (reagent) mark.
Reagent must react: i.e. not allow Tollens on
G (ketone) - no reaction.
Second and third marks are for correct observations.

```
i.e. for different tests on E and F, if one reagent is correct
and one wrong, can score max 1 for correct observation
with correct reagent.
G ketone
AgNO
no reaction
Na2CO
water
no reaction
named indicator
no effect
Named alcohol
no reaction
Named amine or ammonia
no reaction
```

H Acyl chloride
AgNO_{3}
(white) ppt
$\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ named carbonate
Effervescence or CO_{2} or fumes or exothermic
water
fumes
named indicator
acid colour
Named alcohol
Smell or fumes
Named amine or ammonia
fumes
Allow iodoform test or Brady's reagent (2,4,dnph) test (both positive for G)
(iii) Single reagent

If wrong single reagent, CE = zero
Incomplete single reagent (e.g. carbonate) or wrong
formula (e.g. NaCO_{3}) loses reagent mark, but mark on
For "no reaction" allow "nothing"
Different reagents
If different tests on E and F; both reagents and any follow on chemistry must be correct for first (reagent) mark.

Reagent must react: i.e. not allow Tollens on G (ketone) - no reaction.

Second and third marks are for correct observations.
i.e. for different tests on E and F, if one reagent is correct and one wrong, can score max 1 for correct observation with correct reagent.

J Primary alcohol
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$
goes green
$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$
decolourised / goes brown
Lucas test ($\mathrm{ZnCl}_{2} / \mathrm{HCl}$)
Penalise missing H but mark on

K Tertiary alcohol
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$
No reaction
$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$no reaction
Lucas test $\left(\mathrm{ZnCl}_{2} / \mathrm{HCl}\right)$
Rapid cloudiness
If uses subsequent tests e.g. Tollens/Fehlings, test must be on product of oxidation
(b) (i) 3,3-dimethylbutan-1-ol
Allow 3,3-dimethyl-1-butanol1
41
Triplet on three1
(ii) 2-methylpentan-2-olAllow 2-methyl-2-pentanol1
51Singlet or one or no splitting1
M6. (a) Benzene-1,2-dicarboxylic acid
Allow 1,2-benzenedicarboxylic acid
(b)

Must show all bonds including trailing bonds Ignore n
(c) (i) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

NB Two ethanols
$\mathrm{H}_{2} \mathrm{O}$
but only one water
(ii) 6 or six
(iii)

Ignore overlap with O to the left or H to the right, but must only include this one carbon. either or allow both (as they are identical)
(d)

${ }^{\circ} \mathrm{OCH}_{2} \mathrm{CH}_{3}$

[DEP] ${ }^{+}$

OR

Allow + on C or Oin
Dot must be on O in radical
(e) (i) Rate $=k[D E P]$ Must have brackets but can be ()
(ii) Any two of

- experiment repeated/continued over a long period
- repeated by independent body/other scientists/avoiding bias
- investigate breakdown products
- results made public

Not just repetition
Ignore animal testing

