M1.		(a)	(i)	There are three pairs of equivalent carbon atoms	1
		(ii)	75p	ppm	1
	(b)	(i)	4		
	()	(ii)	2		1
					•
	(c)	c) Each structure can represent a pair of cis/Z and trans/E isomers OR Optical isomers			

1

3

1

[5]

M2. (a) (i)

			Ī		
Reagent	Tollens	Fehlings or Benedicts	K ₂ Cr ₂ O ₇ /H ⁺	KMnO₄/H⁺	I₂/NaOH
			or acidified		
Propanal		red ppt or goes red (not red solution)	goes green	P	No reaction
Propanone	no reaction	no reaction	no reaction		Yellow (ppt)

(penalise incomplete reagent e.g. $K_2Cr_2O_7$ or $Cr_2O_7^{2-}/H^+$ then mark on)

(ii) propanal 3 peaks ignore splitting even if wrong

propanone 1 peak

Page 2

1

1

1

1

1

(b) **X** is CH₃CH₂COOH or propanoic acid if both name and formula given, both must be correct, but

1

Y is CH₃CH(OH)CH₃ or propan-2-ol allow propanol with correct formula

Mark the type of reaction and reagent/condition independently. The reagent must be correct or close to score condition

Step 1 Oxidation

K₂Cr₂O₇/H⁻ or other oxidation methods as above allow Cr₂O₇²⁻H⁻ if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

Step 2 reduction or nucleophilic reduction or nucleophilic addition reduction or hydrogenation

NaBH4 LiAIH4 H2

in (m)ethanol or water or ether or dry

or dry

[15]

M3. (a) **A** any C_s alkene

В

(b) **C**

$$H_3C-C$$
OH III
O- CH_3

or CH_3COOH or $HCOOCH_3$

or HOCH₂CHO

(c) **E**

F

$$CH_3CH_2-C \bigcirc O \\ O-CH_2CH_3 \quad (allow \, C_2H_5)$$

1

1

1

Н

(e) I

J

$$\begin{tabular}{lll} H & $C=C$ & CH_2CH_3 & (allow C_2H_5) & NOT hex-3-ene \\ \end{tabular}$$

[10]

1

1

M4. (a) **X** (O–H) (alcohols)

penalise acid or missing "alcohol"

Y C=O

allow carbonyl

NOT acid

4

1

1

M5.D

[16]

M6.

(a) (i)

1

(ii) H_3C —O or $ROCH_3$;

(allow 1 if both (i) and (ii) give CH₃- or H₃C- only)

1

(iii) CH₂CH₂ or two <u>adjacent</u> methylene groups;

1

(iv)

$$\begin{array}{c} \operatorname{CH_3-C} \operatorname{CH_2-CH_2-OCH_3} \\ \operatorname{\mathbb{I}} \\ \operatorname{O} \end{array}$$

OR

CH₃COCH₂CH₂OCH₃;

1

(b) (i) OH in acids or (carboxylic) acid present

(ii)

(c)

reagent	K ₂ Cr ₂ O ₇ /H ⁺	KMnO₄ /H⁺
---------	---	-----------

Y	no reaction	no reaction
Z	orange to green or turns green	purple to colourless or turns colourless

[9]

5

M7.B