M1. (a) (i) There are three pairs of equivalent carbon atoms
(ii) 75 ppm
(b) (i) 4
(ii) 2
(c) Each structure can represent a pair of cis/Z and trans/E isomers OR Optical isomers

M2. (a) (i)

Reagent	Tollens	Fehlings or Benedicts	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$ or acidified	$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$	$\mathrm{I}_{2} / \mathrm{NaOH}$
Propanal	silver (mirror)	red ppt or goes red (not red solution)	goes green	goes colourless	N 0 reaction
Propanone	no reaction	no reaction	no reaction	no reaction	Yellow (ppt)

(penalise incomplete reagent e.g. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ or $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / H^{+}$then mark on)
(ii) propanal 3 peaks ignore splitting even if wrong
(b) X is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ or propanoic acid if both name and formula given, both must be correct, but

1
\mathbf{Y} is $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ or propan-2-ol allow propanol with correct formula

Mark the type of reaction and reagent/condition independently. The reagent must be correct or close to score condition

Step 1 Oxidation

$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$or other oxidation methods as above allow $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2}-\mathrm{H}^{+}$if penalised above (ecf) reflux (not Tollens/Fehlings) or heat or warm

eduction or nucleophilic addition	reduction or nucleophilic addition	reduction or hydrogenation
NaBH_{4}	LiAlH $_{4}$	H_{2}
in (m)ethanol or water or ether or dry	ether or dry	$\mathrm{Ni} / \mathrm{Pt}$ etc

Step 3 esterification or (nucleophilic) addition-elimination or condensation
(conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or HCl
warm (allow without acid reagent if \mathbf{X} and \mathbf{Y} given as reagents)
or reflux or heat

M3. (a) A any C_{5} alkene

B

(b) C
 or $\mathrm{CH}_{3} \mathrm{COOH}$ or HCOOCH_{3}

D

or $\mathrm{HOCH}_{2} \mathrm{CHO}$
(c) E

F

(d) \mathbf{G}

H

(e) 1

J

M4. (a) $\quad \mathbf{X}(\mathrm{O}-\mathrm{H})$ (alcohols) penalise acid or missing "alcohol"
[10]
$Y \mathrm{C}=\mathrm{O}$
allow carbonyl

A
NOT acid
(b)

Allow conseq dibromocompounds following incorrect unbranched alkenes
NOT allow dibromocompound consequent on a duplicate alkene
NOT allow monobromocompounds if HBr added

6:3:1 either next to correct structure or to none

Allow a mark for identifying correct dibromocompound with three peaks even if integration ratio is wrong

1
if 6:3:1 missing or wrong, no marks for splitting
Only award a mark for splitting if it is clear which integration number it refers to

6 singlet or drawn
1
3 doublet or drawn

1 quartet/quadruplet or drawn

M6. (a) (i)

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{C}-\mathrm{C} \\
& \| \\
& \quad \mathrm{O} \text { or } \mathrm{RCOCH}_{3} \text {; } \\
& \quad \text { (or description in words) } \\
& \quad \text { (ignore trailing bonds) }
\end{aligned}
$$

(ii) $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}$ or ROCH_{3};
(allow 1 if both (i) and (ii) give CH_{3} - or $\mathrm{H}_{3} \mathrm{C}$ - only)
(iii) $\mathrm{CH}_{2} \mathrm{CH}_{2}$ or two adjacent methylene groups;
(iv)
$\underset{\sim}{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OCH}_{3}}$
OR
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$;
(b) (i) OH in acids or (carboxylic) acid present
(ii)

(c)

reagent	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$	$\mathrm{KMnO}_{4} / \mathrm{H}^{+}$

\mathbf{Y}	no reaction	no reaction
\mathbf{Z}	orange to green or turns green	purple to colourless or turns colourless

M7.B

