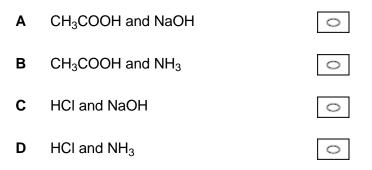


A-Level Chemistry

Acids and Bases (Multiple Choice)

Question Paper

Time available: 31 minutes Marks available: 29 marks

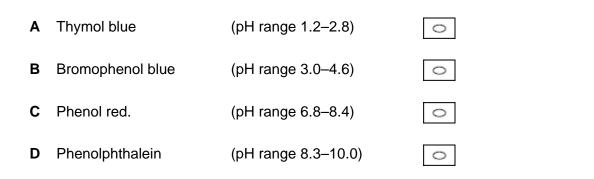

www.accesstuition.com

Α	The pH of a weak base is independent of temperature.	0
В	At temperatures above 298 K, the pH of pure water is less than 7.	0
С	The pH of 2.0 mol dm ^{-3} nitric acid is approximately 0.30	0
D	The pH of 0.10 mol dm ^{-3} sulfuric acid is greater than that of 0.10 mol dm ^{-3} hydrochloric acid.	0

(Total 1 mark)

A 0.10 mol dm⁻³ aqueous solution of an acid is added slowly to 25 cm³ of a 0.10 mol dm⁻³ aqueous solution of a base.

Which acid-base pair has the highest pH at the equivalence point?


(Total 1 mark)

3. Which is the concentration of NaOH(aq), in mol dm⁻³, that has pH = 14.30?

$K_{\rm w} = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \text{ at } 25 \text{ }^{\circ}\text{C}$

Α	-1.16	0
в	5.01 × 10 ^{−15}	0
С	2.00×10^{14}	0
D	2.00	0

Which indicator should be used in a titration to find the concentration of a solution of methylamine using 0.010 mol dm^{-3} hydrochloric acid?

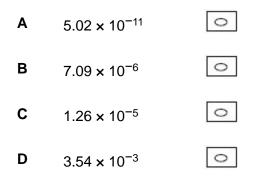
(Total 1 mark)

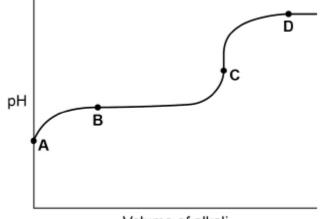
What is the pH of a 0.46 mol dm⁻³ solution of potassium hydroxide at 298 K?

 $(K_{\rm W} = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \text{ at } 298 \text{ K})$

4.

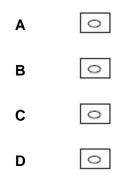
5.


6.



(Total 1 mark)

2,4,6-Trichlorophenol is a weak monoprotic acid, with $K_a = 2.51 \times 10^{-8}$ mol dm⁻³ at 298 K.


What is the concentration, in mol dm⁻³, of hydrogen ions in a 2.00 × 10^{-3} mol dm⁻³ solution of 2,4,6-trichlorophenol at 298 K?

Volume of alkali

Which point on the curve represents a solution that can act as a buffer?

7.

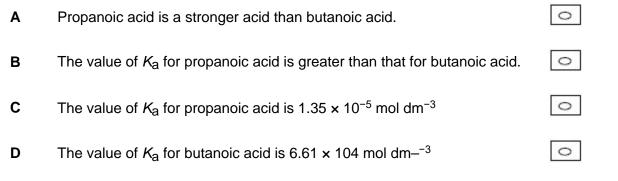
The rate equation for the acid-catalysed reaction between iodine and propanone is:

rate =
$$k [H^+] [C_3 H_6 O]$$

The rate of reaction was measured for a mixture of iodine, propanone and sulfuric acid at pH = 0.70

In a second mixture the concentration of the sulfuric acid was different but the concentrations of iodine and propanone were unchanged. The new rate of reaction was a quarter of the original rate.

What was the pH of the second mixture?



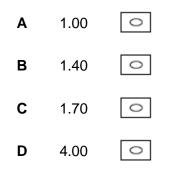
(Total 1 mark)

The table shows the pKa values for two acids.

Name of acid	рК _а
Propanoic acid	4.87
Butanoic acid	4.82

Which statement is correct?

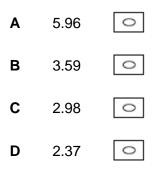
(Total 1 mark)


9.

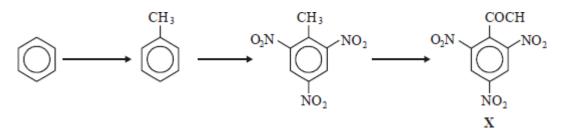
8.

11.

12.


What is the pH of a 0.020 mol dm⁻³ solution of a diprotic acid which is completely dissociated?

(Total 1 mark)


The acid dissociation constant, K_a , of a weak acid HA has the value 2.56 × 10⁻⁴ mol dm⁻³.

What is the pH of a 4.25×10^{-3} mol dm⁻³ solution of HA?

(Total 1 mark)

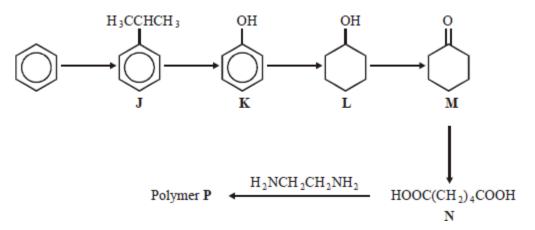
This question is based on the reactions and compounds shown in the scheme below.

A 0.100 mol dm⁻³ solution of **X** is found to have a pH of 2.50. The value of K_a in mol dm⁻³ is

A 3	3.16	×	10 ⁻²
------------	------	---	------------------

- **B** 3.16 × 10⁻³
- **C** 1.00×10^{-4}
- **D** 1.00×10^{-5}

Use the information about the following solutions to answer the question below.


Solution F: This is a mixture of 1 mol of propanoic acid, 1 mol of methanol and 2 mol of water.

Solution G: This was originally the same mixture as solution **F** but it has been left to reach equilibrium.

Compared to the pH of solution F, the pH of solution G will be

- A considerably lower.
- **B** slightly lower.
- **C** slightly higher.
- **D** exactly the same.

(Total 1 mark)

This question is about the following reaction scheme which shows the preparation of polymer **P**.

K is a weak acid with a p K_a of 9.95. The pH of a 0.10 mol dm⁻³ solution of **K** is

- **A** 4.48
- **B** 4.98
- **C** 5.48
- **D** 5.98

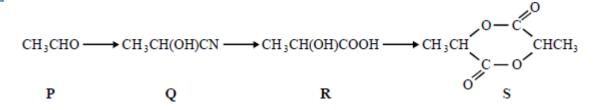
In which one of the following reactions is the role of the reagent stated correctly?

	Reaction	Role of reagent
Α	$\text{TiO}_2 + 2\text{C} + 2\text{CI}_2 \rightarrow \text{TiCI}_4 + 2\text{CO}$	TiO ₂ is an oxidising agent
В	$HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^-$	HNO_3 is a Brønsted-Lowry acid
С	$CH_{3}COCI + AICI_{3} \rightarrow CH_{3}CO^{+} + AICI_{4}^{-}$	$AICI_3$ is a Lewis base
D	$2CO + 2NO \rightarrow 2CO_2 + N_2$	CO is a reducing agent

(Total 1 mark)

16. Use the information below to answer this question.

A saturated solution of magnesium hydroxide, $Mg(OH)_2$, contains 0.1166 g of $Mg(OH)_2$ in 10.00 dm³ of solution. In this solution the magnesium hydroxide is fully dissociated into ions.


Which one of the following is the pH of a solution of magnesium hydroxide containing 4.0×10^{-5} mol dm⁻³ of hydroxide ions at 298 K? ($K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ at 298 K)

- **A** 9.6
- **B** 9.5
- **C** 8.6
- **D** 8.3

(Total 1 mark)

```
17.
```

This question refers to the reaction sequence below.

HCN is a weak acid with a p K_a value of 9.40. If a 0.010 mol dm⁻³ solution of HCN was used in the first step, the concentration of cyanide ions, in mol dm⁻³, would be

- **A** 2.0×10^{-6}
- **B** 6.4 × 10⁻⁵
- **C** 2.0 × 10⁻⁵
- **D** 3.1×10^{-1}

This question is about the reaction between propanone and an excess of ethane-1,2-diol, the equation for which is given below.

$$CH_3COCH_3 + HOCH_2CH_2OH \Longrightarrow (CH_3)_2 C \bigcirc -CH_2 + H_2O \\ O - CH_2 + H_2O \\ Y$$

In a typical procedure, a mixture of 1.00 g of propanone, 5.00 g of ethane-1,2-diol and 0.100 g of benzenesulphonic acid, $C_6H_5SO_3H$, is heated under reflux in an inert solvent. Benzenesulphonic acid is a strong acid.

If 0.100 g of the strong monoprotic acid, benzenesulphonic acid, was dissolved in 100 cm³ of water, the pH of the solution would be

- **A** 0.20
- **B** 1.20
- **C** 2.20
- **D** 3.20

(Total 1 mark)

19. An aqueous solution contains 4.0 g of sodium hydroxide in 250 cm³ of solution. $(K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6})$

The pH of the solution is

- **A** 13.0
- **B** 13.3
- **C** 13.6
- **D** 13.9

The equation and rate law for the reaction of substance P with substance Q are given below.

 $2P + Q \rightarrow R + S$ $rate = k[P]^{2}[H^{+}]$

Under which one of the following conditions, all at the same temperature, would the rate of reaction be slowest?

	[P] / mol dm ⁻³	pН
Α	0.1	0
в	1	2
С	3	3
D	10	4

20.

21.

22.

(Total 1 mark)

Addition of which one of the following to 10 cm³ of 1.0 M NaOH would result in the pH being halved?

- A 10 cm³ of water
- B 100 cm³ of water
- **C** 5 cm³ of 1.0 M HCl
- **D** 10 cm³ of 1.0 M HCl

(Total 1 mark)

A solution of sodium ethanoate has a pH of 8.91 at 25 °C. The hydrogen ion and hydroxide ion concentrations in this solution are

- **A** $[H^+] = 1.00 \times 10^{-9} \text{ mol } \text{dm}^{-3} [OH^-] = 1.00 \times 10^{-5} \text{ mol } \text{dm}^{-3}$
- **B** $[H^+] = 1.00 \times 10^{-9} \text{ mol } \text{dm}^{-3} [\text{OH}^-] = 8.13 \times 10^{-6} \text{ mol } \text{dm}^{-3}$
- **C** $[H^+] = 1.23 \times 10^{-9} \text{ mol } \text{dm}^{-3} [\text{OH}^-] = 1.00 \times 10^{-5} \text{ mol } \text{dm}^{-3}$
- **D** $[H^+] = 1.23 \times 10^{-9} \text{ mol } \text{dm}^{-3} [\text{OH}^-] = 8.13 \times 10^{-6} \text{ mol } \text{dm}^{-3}$

A weak acid HA dissociates in aqueous solution as shown below

 $HA(aq) \rightleftharpoons H^+(aq) + A^-(aq) \qquad \qquad \Delta H = +20 \text{ kJ mol}^{-1}$

Which one of the following changes will result in a decrease in the pH of an aqueous solution of the acid?

- A addition of a little aqueous sodium hydroxide solution
- **B** raising the temperature of the solution
- **C** dissolving a little of the sodium salt, NaA, in the solution
- **D** adding a platinum catalyst to the solution

24. The pH of 0.001 M NaOH at 25°C is

- **A** 13
- **B** 11
- **C** 9
- **D** 3

(Total 1 mark)

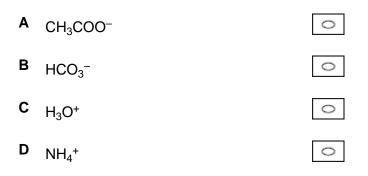
(Total 1 mark)

25.

Which one of the following could be true in an aqueous solution of sodium hydroxide?

- **A** $[H^+] = (OH^-]$
- **B** $pH = -log_{10} [OH^{-}]$
- **C** pH = 1.2
- **D** pH = 12.8

(Total 1 mark)


26.

Which one of the following is the change in units of pH which occurs when 10.0 cm³ of a 1.0 M solution of a strong monoprotic acid are made up to 1.0 dm³ with water?

- **A** 1 **B** 2
- **C** 3
- **D** 5

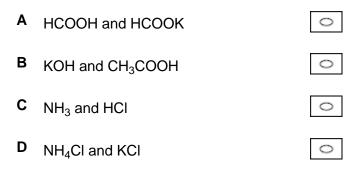
28.

29.

(Total	1	mark)
(i Otai		

A strong acid H_2X dissociates in aqueous solution.

 $H_2X(aq) \rightarrow 2 H^+(aq) + X^{2-}(aq)$


What is the pH of a 0.020 mol dm^{-3} solution of this acid?

Α	1.00	0
В	1.40	0
С	1.70	0
D	2.00	$^{\circ}$

(Total 1 mark)

Equal volumes of two solutions, each with the same concentration, are mixed together at 298 K

Which two solutions, when mixed, form a solution with a pH >7?

