

A-Level Chemistry

Addition Polymers

Mark Scheme

Time available: 50 minutes Marks available: 43 marks

1. (a) M1 structure of chloroethene

Allow any correct structural representations of monomer and polymer

M2 structure of PVC
M2 allow correct repeating unit, but penalise incorrect use of bracket in M3

M3 correct use of n on both sides of equation

M2 and M3 could score as ECF from incorrect M1
(b) M1 no reaction / yellow-orange

M1 ignore brown; ignore red; ignore 'nothing'; ignore 'no observation'

M2 polymer is saturated / does not contain double bond(s)
(c) M1 $\quad \mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}$

M2 allow make less brittle; ignore making more elastic

M2 makes it more flexible
2. (a) M1 $\quad \mathrm{C}_{n} \mathrm{H}_{2 n+2}$

M2 $14.0 n+2.0$ or $14 n+2$
or $2(7.0 n+1.0)$ or $2.0(7 n+1)$ or $2(7 n+1)$
(b) M1 nonane has stronger / greater / more van der Waals' forces between molecules
or converse arguments for 2,4-dimethylbutane having lower boiling point
question refers to nonane if not expressly stated by candidate
intermolecular forces = forces between molecules
M1 ignore abbreviations vdW and/or imf

M2 nonane molecules pack closer together / more (surface) contact
M2 ignore reference to surface area alone
$C E=0$ reference to breaking (covalent) bonds / breaking chain
(c) $\mathrm{C}_{9} \mathrm{H}_{20}+14 \mathrm{O}_{2} \rightarrow 9 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
allow multiples; ignore any state symbols; correct structures rather than formulae are fine
(d) M1 nitrogen and oxygen from air react

M1 must be at least one reference to air and no reference to nitrogen/oxygen coming from the fuel

M2 at high temperature
ignore reference to pressure, heat, hot, incomplete combustion
if temperature is stated, must be over $1000^{\circ} \mathrm{C}$
(e) thermal (cracking)
(f)

allow any correct structural representation
ignore any n or brackets
3. (a) nucleophilic addition
both words needed
NOT any additional names
(b) M1 racemic (mixture) / racemate

M2 planar (around) carbonyl / C=O
M2 NOT molecule is planar
Allow flat for planar

M3 (equal chance of) attack from each side (by CN^{-})

M4 a correct structure of 2-hydroxypropanenitrile
M4 any correct 2D or 3D structure

M5 correct 3D representations of both isomers, e.g.

M5 must show at least one wedge bond and one dash bond in each structure and any bonds in the plane cannot be at 180° to each other second structure could be drawn as mirror image of first or with same orientation with two groups swapped round, e.g.

Allow ECF for second structure from incorrect first structure, providing molecule is chiral
(c) M1 conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ or conc $\mathrm{H}_{3} \mathrm{PO}_{4}$

M1 Allow conc to come from conditions line

M2 heat $/ 170^{\circ} \mathrm{C}$
M2 depends on attempt at correct reagent in M1
Allow high temperature / hot / $100-300^{\circ} \mathrm{C} / 373-573 \mathrm{~K} /$ reflux
Ignore references to pressure
Ignore warm
NOT ethanolic / alcoholic
Alternative answer
M1 $\mathrm{Al}_{2} \mathrm{O}_{3}$
M2 pass vapour over hot $\mathrm{Al}_{2} \mathrm{O}_{3}$
(d)

$$
\begin{aligned}
& \text { Ignore any brackets or } n \\
& \quad \mathrm{NOT} \mathrm{C}-\mathrm{N} \text { or } \mathrm{C}=\mathrm{N} \text { if } \mathrm{CN} \text { group displayed } \\
& \\
& \\
& \text { Allow structures with } \mathrm{CN} \text { on either } \mathrm{C} \text { in each of the three units }-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{CN})-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{CN})-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{CN})-
\end{aligned}
$$

4. (a) Electrophilic addition

M2 for curly arrow from double bond to H
M3 for curly arrow from O-H bond to O
M4 for intermediate structure including + on correct tertiary carbon
M5 for curly arrow from Ip on O to C^{+}(O must also be -ve)
(b)

Formed via a primary C^{+}rather than tertiary C^{+}
M2
Primary C^{+}less stable than tertiary
OR primary has fewer e-donating alkyl groups
M3
(c) Skeletal formula of cycloalkane

(d) Addition (polymerisation)

(a) (i)

(1)
ignore Na^{+}unless covalently bonded
(ii)

must be dipeptide, not polymer nor anhydride allow - CONH - or $-\mathrm{COHN}-$ allow zwitterion
(iii) hydrogen bonding (1)

QL
Allow with dipole-dipole or v derWaals, but not dipole-dipole etc alone
(b) (i) Type of polymerisation: addition(al) (1)

(1)
not multiples
allow n
(ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}(1) \mathrm{C}_{2} \mathrm{H}_{5}$
(iii)

(1)
01

