

A-Level Chemistry

Alcohol Production

Mark Scheme

Time available: 79 minutes Marks available: 76 marks

Mark schemes

1. (a) Percentage of oxygen by mass $=100-40.9-4.5=54.6$

	C	H	O
\%	$\frac{40.9}{12}$	$\frac{4.5}{1}$	$\frac{54.6}{16}$
Divide by A_{r}	$=3.41$	$=4.5$	$=3.41$

Divide by smallest $=\frac{3.41}{3.41}=1 \quad \frac{4.5}{3.41}=1.32 \quad \frac{3.41}{3.41}=1$
Nearest whole number ratio $=1 \times 3 \quad 1.32 \times 3 \quad 1 \times 3$

$$
=3: 3.96: 3
$$

Nearest integer ratio $=3: 4: 3$

Empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
Empirical formula mass $=88=$ molecular formula mass
Therefore, molecular formula is same as the empirical formula - $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
(c) Advantage - ethanol is produced at a faster rate

Disadvantage - more energy is used / required in the reaction
(d) Air gets in / oxidation occurs
(e) Alcohol OH absorption in different place (3230-3550 cm^{-1}) from acid OH absorption (2500-3000 cm^{-1})

The $\mathrm{C}=\mathrm{O}$ in acids has an absorption at $1680-1750 \mathrm{~cm}^{-1}$

1
2. (a)

Mi $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+2 \mathrm{CO}_{2}$
$\left(2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
Penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for ethanol in M1.
M2 and M3
Mark M2 and M3 independently.
Any two conditions in any order for M2 and M3 from

- (enzymes from) yeast or zymase
- $\quad 25^{\circ} \mathrm{C} \leq \mathrm{T} \leq 42^{\circ} \mathrm{C} \quad \mathrm{OR} \quad 298 \mathrm{~K} \leq \mathrm{T} \leq 315 \mathrm{~K}$
- anaerobic / no oxygen / no air OR neutral pH

A lack of oxygen can mean either without oxygen or not having enough oxygen and does not ensure no oxygen, therefore only credit "lack of oxygen" if it is qualified.
Penalise 'bacteria', 'phosphoric acid', 'high pressure' using the list principle.

M4 (fractional) distillation or GLC
Ignore reference to 'aqueous' or 'water' (ie not part of the list principle).

M5 Carbon-neutral in this context means
There is no net / overall (annual) carbon dioxide / CO_{2} emission to the atmosphere
OR
There is no change in the total amount / level of carbon dioxide / CO_{2} present in the atmosphere

For M5 - must be about CO_{2} and the atmosphere.
The idea that the carbon dioxide $/ \mathrm{CO}_{2}$ given out equals the carbon dioxide $/ \mathrm{CO}_{2}$ that was taken in from the atmosphere.
(b) $\quad \mathbf{M 1 q}=\mathrm{m} \mathbf{c} \Delta \mathrm{T}$ (this mark for correct mathematical formula)

Full marks for M1, M2 and M3 for the correct answer.
In M1, do not penalise incorrect cases in the formula.
$\mathbf{M 2}=(75 \times 4.18 \times 5.5)$
1724 (J) OR 1.724 (kJ) OR 1.72 (kJ) OR 1.7 (kJ)
(also scores M1)
Ignore incorrect units in M2.
M3 Using 0.0024 mol
therefore $\Delta \mathrm{H}=\underline{\mathbf{- 7 1 8}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
(Accept a range from -708 to -719 but do not penalise more than 3 significant figures)

Penalise M3 ONLY if correct numerical answer but sign is incorrect. Therefore + 718 gains two marks.
If units are quoted in M3 they must be correct.
If $\Delta T=278.5$, CE for the calculation and penalise M2 and M3.
M4 and M5 in any order
Any two from

- incomplete combustion
- heat loss
- heat capacity of Cu not included
- some ethanol lost by evaporation
- not all of the $\left(2.40 \times 10^{-3} \mathrm{~mol}\right)$ ethanol is burned / reaction is incomplete

If $\mathbf{C}=4.81$ (leads to 1984) penalise M2 ONLY and mark on for M3 = - 827
(c) (i) M1 enthalpy / heat / energy change (at constant pressure) or enthalpy / heat / energy needed in breaking / dissociating (a) covalent bond(s)

Ignore bond making.
M2 averaged for that type of bond over different / a range of molecules / compounds

Ignore reference to moles.
(ii) M1

$\sum \mathrm{B}($ reactants $)-\sum \mathrm{B}($ products $)=\Delta H$

OR

$\underline{\text { Sum of bonds broken }}$ - $\underline{\text { Sum }}$ of bonds formed $=\underline{\Delta H}$

OR

$\mathrm{B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}-\mathrm{O})+\mathrm{B}(\mathrm{O}-\mathrm{H})+5 \mathrm{~B}(\mathrm{C}-\mathrm{H})+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})$
$-4 \mathrm{~B}(\mathrm{C}=\mathrm{O})-6 \mathrm{~B}(\mathrm{O}-\mathrm{H})=\Delta H=-1279$
Correct answer gains full marks.
Credit 1 mark for - 496 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2).
If no $A E$, check for a correct method; this requires either a correct cycle with $2 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ OR a clear statement of M1 which could be in words and scores only M1.

M2 (also scores M1)
$348+360+463+5(412)+3 B(O=O)$
(3231) (or 2768 if $\mathrm{O}-\mathrm{H}$ cancelled)
$-4(805)-6(463)=\Delta H=-1279$
(5998) (or 5535 if O-H cancelled)
$3 \mathrm{~B}(\mathrm{O}=\mathrm{O})=\underline{1488}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Credit a maximum of one mark if the only scoring point is bonds formed adds up to 5998 (or 5535) OR bonds broken includes the calculated value of 3231 (or 2768).

M3
$\mathrm{B}(\mathrm{O}=\mathrm{O})=\underline{496}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Award 1 mark for -496
Students may use a cycle and gain full marks
3. (a) M1 C ${ }_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+2 \mathrm{CO}_{2}$
$\left(2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
Mark independently
For M1 and M3 ignore state symbols and credit multiples
For M1 and M3 penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ once only
M2 fermentation
M3 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$)

M4 A specified process e.g. planting / harvesting / transport / extracting sugar / distilling ethanol solution / fertiliser production etc.

M5 The specified process uses / burns (fossil) fuel that releases CO_{2}
For M5, "releases / increases carbon emissions" is insufficient as an alternative to releases CO_{2}
(b) M1 sodium or potassium hydroxide / NaOH / KOH

Mark on to M2 from hydroxide ion

M2 depends on correct M1

Ignore OH^{-}if $\mathrm{KOH} / \mathrm{OH}^{-}$
warm / heat / reflux and aqueous or (aq) or water
For M2 ignore "dilute"
For M2 penalise $T>100^{\circ} \mathrm{C}$
M3 nucleophilic substitution
Acidified $\mathrm{KOH} / \mathrm{NaOH}$ or $\mathrm{H}_{2} \mathrm{SO}_{4}$ with $\mathrm{KOH} / \mathrm{NaOH}$ loses M 1 and M 2

For M3, both words required

NB The arrows here are double-headed

M4 must show an arrow from the lone pair of electrons on the oxygen atom of the negatively charged hydroxide ion to the C atom.

Penalise M4 if covalent $\mathrm{NaOH} / \mathrm{KOH}$ is used
Penalise one mark from M4 or M5 if half-headed arrows are used
M5 must show the movement of a pair of electrons from the
C - Br bond to the Br atom. Mark M5 independently provided it is from theioriginal molecule.

Penalise M5 for formal charge on C of the C-Br or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$
Penalise once only for a line and two dots to show a bond.
For M4 and M5, award full marks for an $\mathrm{S}_{\mathrm{N}} 1$ mechanism
For M4 and M5, maximum 1 of 2 marks if wrong reactant is used.
Penalise M5 if an extra arrow is drawn from the Br of the $\mathrm{C}-\mathrm{Br}$ bond to, for example, K^{+}
Do not penalise the use of "sticks"
One statement from

- The yield is (very) low / not a high yield OR elimination occurs / ethene formed
- The rate of reaction slow
- Bromoethane has to be manufactured / made first
- Bromoethane is expensive
(c) M1 concentrated phosphoric acid / conc. $\mathrm{H}_{3} \mathrm{PO}_{4} \mathbf{O R}$ concentrated sulfuric acid / conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answers in any order
Ignore reference to support medium in M1
M2 hydration or (electrophilic) addition

For M3 and M4 any two from

Do not apply the list principle to these three chosen criteria in M3 and M4

- Excess ethene

OR Excess steam / water / $\mathrm{H}_{2} \mathrm{O}$
OR remove the ethanol as it forms
$O R$ recycle the ethene

- Specified Pressure
$50 \mathrm{~atm} \leq \mathrm{P} \leq 100 \mathrm{~atm}$
OR $5000 \mathrm{kPa} \leq \mathrm{P} \leq 10000 \mathrm{kPa}$
$O R 5 \mathrm{MPa} \leq \mathrm{P} \leq 10 \mathrm{MPa}$
- HighTemperature unless they give a value that is not in the ranges given here;

OR $300^{\circ} \mathrm{C} \leq \mathrm{T} \leq 600^{\circ} \mathrm{C}$
OR $570 \mathrm{~K} \leq \mathrm{T} \leq 870 \mathrm{~K}$
Accept a reference to "low temperature" if they specify a correct temperature range or a correct temperature in the range
4. (a) Three conditions in any order for M1 to M3

M1 yeast or zymase
M2 $\quad 30^{\circ} \mathrm{C} \geq \mathrm{T} \leq 42^{\circ} \mathrm{C}$
M3 anaerobic/no oxygen/no air OR neutral pH
M4 $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$ OR $2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+4 \mathrm{CO}_{2}$

Mark independently
Penalise "bacteria" and "phosphoric acid" using the list principle Ignore reference to "aqueous" or "water" (i.e. not part of the list principle)
Or other multiples
4
(b) M1 Carbon-neutral

Ignore "biofuel"

M2 6 ($\mathrm{mol} / \mathrm{molecules}$) $\mathrm{CO}_{2} /$ carbon dioxide taken in/used/used up (to form glucose or in photosynthesis)

M3 $\underline{6}$ ($\mathrm{mol} / \mathrm{molecules}$) $\mathrm{CO}_{2} /$ carbon dioxide given out due to 2 ($\mathrm{mol} / \mathrm{molecules}$) $\mathrm{CO}_{2} /$ carbon dioxide from fermentation/ Process 2 and 4 ($\mathrm{mol} / \mathrm{molecules}$) $\mathrm{CO}_{2} /$ carbon dioxide from combustion/Process 3

It is NOT sufficient in M2 and M3 for equations alone without commentary or annotation or calculation
(c) M1 (could be scored by a correct mathematical expression)

OR
$(\Sigma) \underline{B}_{\text {reactants }}-(\Sigma) \mathrm{B}_{\text {products }}=\Delta H$
(where $B=\underline{\text { bond }}$ enthalpy/bond energy)
For M1 there must be a correct mathematical expression using ΔH or "enthalpy change"

M2 Reactants $=(+) \underline{4719}$ OR Products $=(-) \underline{5750}$

Award full marks for correct answer.
Ignore units.
M2 is for either value underlined
M3 is NOT consequential on M2
3
Award 1 mark ONLY for +1031
Candidates may use a cycle and gain full marks.
M4 Mean bond enthalpies are not specific for this reaction $O R$ they are average values from many different compounds/molecules

Do not forget to award this mark
1
(d) M1 $\mathrm{q}=\mathrm{mc} \mathrm{\Delta T}$ (this mark for correct mathematical formula)

M2 = $6688(\mathrm{~J})$ OR 6.688 (kJ) OR 6.69 (kJ) OR $6.7(\mathrm{~kJ})$
M3 $\quad 0.46 \mathrm{~g}$ is 0.01 mol
therefore $\Delta \mathrm{H}=\underline{\mathbf{- 6}} \mathbf{6 6 9} \mathrm{kJ} \mathrm{mol}^{-1} \mathrm{OR}-\underline{\mathbf{6 7 0}} \mathrm{kJmol}^{-1}$
OR $\underline{-668.8} \mathrm{~kJ} \mathrm{~mol}^{-1}$
Award M1, M2 and M3 for correct answer to the calculation
Penalise M3 ONLY if correct answer but sign is incorrect
In M1, do not penalise incorrect cases in the formula
If $m=0.46$ or $m=200.46$ OR if $\Delta T=281, C E$ and penalise $M 2$ and M3
If $c=4.81$ (leads to 7696) penalise M2 ONLY and mark on for M3 = -769.6 OR -770
Ignore incorrect units in M2
M4 Incomplete combustion
Do not forget to award this mark. Mark independently
5. (a) M1 $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

M2 $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$

M4 shows that formation of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ takes in $6 \mathrm{CO}_{2}$ and fermentation and combustion of ethanol gives out $6 \mathrm{CO}_{2}$
(b) CO_{2} / carbon emissions from transport (from South America to Europe)

Energy needed to separate ethanol from propanone and butan-1-ol
(c) M1 685.5 (686), 668(.25), 595(.33...) in third column of table ignore any minus sign on values

M2 ethanol need evidence of attempt to calculate energy released per C atom
(d) M1 amount propanone $=\frac{1.18}{58.0}(=0.0203 \mathrm{~mol})$

M2 $\mathbf{q}=\mathbf{M 1} \times 1786(=36.3 \mathrm{~kJ}=36300 \mathrm{~J})$

M3 $\Delta \mathrm{T}=\frac{\mathrm{q}}{\mathrm{mc}}=\frac{36300}{260 \times 4.18}=33.4^{\circ} \mathrm{C}$

M4 final temperature $=22.3+\mathbf{M} 3=55.7^{\circ} \mathrm{C}$
(e) M1 correctly showing how many of which types of bonds are broken / made (broken) 3(C-C) $+9(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+(\mathrm{O}-\mathrm{H})+6(\mathrm{O}=\mathrm{O})$ (made) $8(\mathrm{C}=\mathrm{O})+10(\mathrm{O}-\mathrm{H})$

M2 3(C-C)
$=8(\mathrm{C}=\mathrm{O})+10(\mathrm{O}-\mathrm{H})-2504-9(\mathrm{C}-\mathrm{H})-(\mathrm{C}-\mathrm{O})-(\mathrm{O}-\mathrm{H})-6(\mathrm{O}=\mathrm{O})$
$=8(805)+10(463)-2504-9(412)-360-463-6(496)$
$=1059$

M3 $\quad(\mathrm{C}-\mathrm{C})=\frac{\mathrm{M} 2}{3}=353\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

M3 must show the breaking of the $\mathrm{H}-\mathrm{O}$ bond in $\mathrm{H}_{2} \mathrm{SO}_{4}$

M4 is for the structure of the correct carbocation

M5 must show an arrow from the lone pair of electrons on the negatively charged oxygen of HSO_{4}^{-}towards the positively charged atom of their carbocation drawn

All arrows are double-headed. Penalise one mark from the total for 2-5 if half headed arrows are used
Do not penalise the "correct" use of "sticks"
Penalise only once in any part of the mechanism for a line and two dots to show a bond
For M2 / 3, the full structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$ does not need to be shown, but the key features for the mechanism should be shown and the formula must be correct. Penalise only once in M2 / 3 an incorrect but genuine attempt at the structure of sulfuric acid
M2 ignore partial negative charges on the double bond
M3 penalise incorrect partial charges on the $\mathrm{H}-\mathrm{O}$ bond and penalise formal charges
Penalise M4 if there is a bond drawn to the positive charge
Max 3 of 4 marks (M2-5) for wrong organic reactant or wrong carbocation (ignore structure of product)
If attack is shown from $\mathrm{C}=\mathrm{C}$ to H^{+}rather than $\mathrm{H}_{2} \mathrm{SO}_{4}$, then allow M2 but not M3
For M5, credit attack on a partially positively charged carbocation structure, but penalise M4 for the structure of the carbocation
For M5, the full structure of HSO_{4}^{-}is not essential, but attack must come from a lone pair on an individual oxygen on HSO_{4}^{-}, but the sign could by anywhere on the ion (eg : $\mathrm{OSO}_{3} \mathrm{H}^{-}$)
(g) M1 formed from less stable carbocation

M2 formed from primary rather than secondary carbocation

