

A-Level Chemistry

Alkanes

Mark Scheme

Time available: 65 minutes Marks available: 61 marks

www.accesstuition.com

Mark schemes

1.	(a)	Single bonds <u>only</u> /no double or multiple bonds;	1
		Contains carbon and hydrogen <u>only;</u> C and H <u>only</u>	
		not C and H molecules	1
		Alkanes;	1
	(b)	 Fractions or hydrocarbons or compounds have different boiling points/ separation depends on bp; 	
		Ignore mp and vdw	1
		(2) bp depends on size/ $M_{\rm r}$ / chain length;	
		If refer to bond breaking/cracking/ blast furnace/oxygen/air 2 max	1
		(3) Temp gradient in tower or column / cooler at top of <u>column</u> or vice versa;	
		QWC	1
		(4) Higher bp / larger or heavier molecules at bottom (of column) or vice versa;	
		Not increasing size of fraction Not gases at top	1
	(c)	Large molecules or compounds or long chain hydrocarbons (broken) into <u>smaller</u> molecules or compounds or smaller chain hydrocarbons;	
		QWC	1
		Zeolite or aluminosilicate (catalyst);	1
		$C_{14}H_{30} \rightarrow C_8H_{18} + C_6H_{12};$ Only	1
		Smaller chain molecules are in more demand or have higher value or vice versa;	
		Insufficient to say more useful/have more uses	1

(d) $C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O;$ Allow multiples

2.

		Allow multiples	1	
	Rh/ F			
		Penalise contradiction of name and symbol		
			1	
	2CO	+ 2NO \rightarrow 2CO ₂ + N ₂ / 2CO + O ₂ \rightarrow 2CO ₂ ;		
		Allow multiples		
			1	
	Gree	nhouse gas/ absorbs infrared radiation;		
			1	
(e)	car le			
		thly/ can't accelerate; Not incomplete combustion or bad effect on engine		
		Not doesn't go as far.		
			1	
	Testi	it (before sale) /Quality control etc;		
			1	
(f)	(com			
(')	 (f) (compounds with) same molecular formula / same no and type of atoms; <i>Not atoms/elements with same molecular formula.</i> 			
	If same <u>chemical</u> formula, can allow M2			
			1	
	And	different structure/ structural formula;		
		M2 consequential on M1		
	Allow displayed formula for M2			
	2,2,4-trimethylpentane;			
		Only (but allow numbers in any order)		
			1	
(a)	(i)	any two from:		
		show a <u>gradation/trend/gradual change</u> in physical properties/		
		a specified property differ by CH ₂		
		chemically similar or react in the same way		
		have the same functional group		
		(penalise 'same molecular formula')		
		(penalise 'same empirical formula')	•	
			2	
	(ii)	fractional distillation or fractionation		
			1	

[20]

		(iii)	contains only single bonds or has no double bonds		
			(credit 'every carbon is bonded to four other atoms' provided it does not contradict by suggesting that this will always be H)		
			not contradict by duggooung that the will alwaye borny	1	
	(b)	(i)	the molecular formula gives the actual <u>number of atoms of each</u> <u>element/type</u> in a molecule/hydrocarbon/compound/formula		
			(penalise 'amount of atoms')		
			(penalise 'ratio of atoms')		
				1	
		(ii)	C ₁₄ H ₃₀ only		
		(")	(penalise as a contradiction if correct answer is		
			accompanied by other structural formulae)		
				1	
		(iii)	$C_{10}H_{22} + 5\frac{1}{2}O_2 \rightarrow 10C + 11H_2O$		
			(or double this equation)		
				1	
	(c)	(i)	$\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO$		
	(•)	(.)	(or double this equation)		
				1	
		(;;)	Platinum or palladium or rhadium		
		(ii)	Platinum or palladium or rhodium	1	
		<i>/</i> ····\			
		(iii)	$2CO + 2NO \rightarrow 2CO_2 + N_2 \text{ or}$		
			$2NO \rightarrow N_2 + O_2 \text{ or}$		
			(ignore extra O_2 molecules provided the equation balances)		
			$C + 2NO \rightarrow CO_2 + N_2$		
			(or half of each of these equations)		
			$C_8H_{18} + 25NO \rightarrow 8CO_2 + 12\frac{1}{2}N_2 + 9H_2O$		
			(or double this equation)		
				1	[40]
					[10]
]	(a)		de oil is heated to vaporise it / oil vaporised (1)		
			our passed into fractionating) tower / column (1)		
		•	of tower cooler than bottom egative temperature gradient (1)		
		fract			
			condensed at different temperatures OR levels		
			low boiling fractions at the top		
		OR	at the top small molecules or light components (1)	max 3	
				шах э	

3.

	(b)	(i)	Identify shortfall in supply - e.g. petrol / small molecules (1) Higher value products OR more useful products (1)		
			OR cracking produces more of material (problem solving)		
		(ii)	Motor fuels Aromatic hydrocarbons Branched alkanes / hydrocarbons Cycloalkanes <i>Any two (2)</i> <i>Ignore specific fractions, alkanes, shorter alkanes, penalise alkenes, and hydrogen</i>	4	
	(c)	Type Con	alyst: Zeolite / aluminosilicate (1) e of <i>mechanism</i> : Carbocation / heterolytic fission (1) <i>ditions:</i> High temp OR around 450 °C [300 – 600] °C NOT heat / warm (1) nt pressure [> 1 atm ≤ 10 atm OR 1 megaPa, 1000 kPa] (1) <i>NOT high pressure</i>		
				4	[11]
Λ	(a)	Step	o 1		
4.		M 1	fractional distillation		
					1
		M2 size	separated into mixtures of compounds with similar boiling points / similar d molecules		
			M2 to separate naphtha from other compounds; to separate compounds by chain length / size / boiling point		1
		Step	0 2		
		М3	(thermal) cracking		
			M3 not catalytic cracking		1
		Μ4	to make alkenes / propene / shorter molecules		1
		Step	53		
		M5	(addition) polymerisation <i>M5</i> not condensation polymerisation 1		1
		M6	molecules joined together or to produce long chain molecule		
		-	For each step the two marks are independent		1
	(b)	no p	olar bonds (in chain) / non-polar		
			Do not allow if only C-H bonds mentioned as non polar		4
			www.accesstuition.com		1

(c) to prevent build-up of waste (in landfill) OR they can be broken down by natural processes

			[8]		
5.	(a)	2,2,4-trimethylpentane				
		This answer only but ignore punctuation	1			
	(b)	M1 (fractional or simple) distillation				
		Incorrect process in M1 CE=0				
		If M1 blank, mark on for M2 and M3 (igno	re boiling, condensing) 1			
		M2 idea that isooctane / the one with the lower boili (or reaches top of column first)	ing point boils (first)			
		Ignore reference to octane boiling and be temperature	ing collected at higher			
		If temperature referred to, should be betw	veen 99 and 124°C			
		"it" refers to isooctane				
		M2 – allow vaporises/evaporates first				
			1			
		M3 idea that isooctane <u>condenses / liquefies</u> and <u>co</u> Penalise M2 and M3 if octane boils first	ollected			
		In M2 and M3 – if no specific reference to score one mark for M2 + M3 combined if a correct				
		M2 and M3 must refer to a laboratory app process)	paratus (not to an industrial			
			1			
	(c)	$C_8H_{18} + 12\frac{1}{2}O_2 \longrightarrow 8CO_2 + 9H_2O$				
	(0)	$C_{81118} + 12/2C_2 \rightarrow 0000_2 + 511_2O$ Accept multiples; ignore state symbols				
		Accept any correct structural representation	ion of isoactane			
			1			
	(1)					
	(d)	M1 Alternative route/mechanism/pathway	1			
			-			
		M2 With lower <u>activation energy</u>				
		Accept E _a for activation energy	1			
			1			
	(e)	$2CO + 2NO \rightarrow 2CO_2 + N_2$				
		Accept multiples; ignore state symbols				
			1			

1

(f) M1 to reduce amount of metals needed / small amount of metal needed Relates to low amount of metal 1 M2 Increase / maximise / produce large surface area or to give catalyst a larger surface area: volume ratio or so that high(er) proportion of atoms/metal is on surface Is related to large surface area 1 (g) M1 bromine (water or in organic solvent or CCl_4) / Br_2 (aq) / Br_2 No reagent or an incorrect reagent (e.g. bromide), CE=0; Penalise Br (or incorrect formula of other correct reagent) but mark on for M2 It must be a whole reagent and/or correct formula If oxidation state given in name, it must be correct If 'manganate' or 'manganate(IV)' or incorrect formula, penalise M1 but mark on Ignore 'acidified' 1 M2 (orange/yellow to) colourless / decolourised / loses its colour Ignore goes clear Ignore brown/red, but penalise other incorrect colours 1 Alternatives: M1 = potassium manganate(VII), M2 = colourless $M1 = conc \ sulfuric \ acid, \ M2 = brown$ M1 = iodine, M2 = colourless[12]