

A-Level Chemistry

Alkanes

Question Paper

Time available: 65 minutes Marks available: 61 marks

www.accesstuition.com

	ol burns completely in a plentiful supply of air but can undergo incomplete combustion i engine.	па
a)	State the meaning of both the words saturated and hydrocarbon as applied to the terr saturated hydrocarbon.	m
	Name the homologous series to which C ₈ H ₁₈ belongs.	
)	Outline the essential features of the fractional distillation of crude oil that enable the c oil to be separated into fractions.	rude
)		rude
)		rude
)		rude
))		rude
))		rude
)		rude

Petrol contains saturated hydrocarbons. Some of the molecules in petrol have the molecular

fractional distillation and by cracking suitable heavier fractions.

formula C₈H₁₈ and are referred to as octanes. These octanes can be obtained from crude oil by

1.

C_8H_{18} is obtained by the catalytic cracking of suitable heavy fractions. State what is meant by the term <i>cracking</i> and name the catalyst used in catalytic cracking.	cking.
Write an equation to show how one molecule of $C_{14}H_{30}$ is cracked to form one molecule C_8H_{18} and one molecule of another hydrocarbon.	ule of
Explain why oil companies need to crack 'suitable heavy fractions'.	
Write an equation for the incomplete combustion of C_8H_{18} to form carbon monoxide a water only.	and
A catalytic converter is used to remove carbon monoxide from the exhaust gases in a Identify a catalyst used in the catalytic converter.	a car.
NA/vita an acception to all our barry park or managerials in managerial in a catalytic assertant	
Write an equation to show how carbon monoxide is removed in a catalytic converter.	
State why the water produced in the exhaust gases may contribute to global warming	

(e)	When some petrol was accidentally contaminated in 2007, the sensors in the affected caused a decrease in the supply of petrol to the engine.	ars
	Suggest the effect that the contaminated fuel would have on the performance of the cars	5.
	State how the oil company might have recognised the problem before the petrol was sole	d.
(f)	The molecular formula C_8H_{18} represents several structural isomers.	(2)
(1)	The molecular formula C ₈ (1 ₁₈ represents several structural isomers.	
	State what is meant by the term structural isomers.	
	Name the following structural isomer of C ₈ H ₁₈	
	$\begin{array}{c cccc} CH_3 & H & CH_3 \\ & & & & & \\ H_3C & -C & -C & -C & -CH_3 \\ & & & & & & \end{array}$	
	H H CH ₃	
		(3) 20 marks)

(i)	State two other characteristics of homologous series.
	Characteristic 1
	Characteristic 2
(ii)	Name the process which is used to obtain the fractions from petroleum.
(iii)	
De	cane has the molecular formula C ₁₀ H ₂₂
(i)	State what is meant by the term <i>molecular formula</i> .
(ii)	Give the molecular formula of the alkane which contains 14 carbon atoms.
(iii)	Write an equation for the incomplete combustion of decane, $C_{10}H_{22}$, to produce carbon and water only.
	nen petrol is burned in an internal combustion engine, some nitrogen monoxide, NO, formed. This pollutant is removed from the exhaust gases by means of a reaction in a calytic converter.
cat	ary the conventor.

The fractions obtained from petroleum contain saturated hydrocarbons that belong to the

2.

homologous series of alkanes.

(iii)	Write an equation to show	w how nitrogen monoxide	e is removed from	the exhaust				
(111)	gases as they pass throu	=		THE EXHLUST				
				(Total 1				
	de oil is separated into fract obtained by this process.	tions by fractional distillat	tion. Outline how	different fraction				
								
) The	e table below gives details o	f the supply of, and dema	and for, some crud	de oil fractions.				
) The	-	f the supply of, and dema		de oil fractions.				
) The	table below gives details o			de oil fractions.				
) The	-	Approxin Typical supply	nate %	de oil fractions.				
) The	Fractions	Approxin Typical supply from crude oil	nate % Global demand	de oil fractions.				
) The	Fractions Gases	Approxin Typical supply from crude oil	nate % Global demand	de oil fractions.				
) The	Fractions Gases Petrol and naphtha	Approxin Typical supply from crude oil 2 16	Global demand 4 27	de oil fractions.				
) The	Fractions Gases Petrol and naphtha Kerosine	Typical supply from crude oil 2 16 13	Global demand 4 27 8	de oil fractions.				
(i)	Fractions Gases Petrol and naphtha Kerosine Gas oil	Approximate Typical supply from crude oil 2 16 13 19 50	Global demand 4 27 8 23 38					

(ii) Give the two	main types of product obtained by catalytic cracking.	
	Туре 1		
	Туре 2		
,	•	used in catalytic cracking. State the type of mechanism involved and rial conditions used in the process.	
(Catalyst		
(Conditions		
		(Tota	al 11 ma

4.

This question is about poly(propene).

crude oil	step 1	naphtha	step 2	propene	step 3	poly(propene)	
Naphtha is	a mixture of	alkanes wi	th 6 to 12 c	arbon atom	s per molec	cule.	
	tep, name thon of poly(p	-	and state br	iefly the pui	pose of the	process that leads	s to
Step 1							
Name							
Purpose _							
Step 2							
Name							
Purpose _							
Step 3							
Name							
Purpose _							
D = l+ //= = = = =		- d - au - d - la l	. h	. :			
	ne) is not bid	-		is unreacu	ve.		
Explain wh	y poly(prope	ene) is unrea	active.				
	 						

The three key steps in the manufacture of poly(propene) from crude oil are shown.

(a)

(b)

(c)	Scientists are developing new polymers, including some that are biodegradable.	
	Suggest why it is beneficial for some polymers to be biodegradable.	
		(4)

(1) (Total 8 marks)

Octane and isooctane are structural isomers with the molecular formula C₈H₁₈.

The displayed formulas and boiling points of octane and isooctane are shown in **Figure 1**.

Figure 1

www.accesstuition.com

O O Na	ame a laboratory technique that could be used to separate isooctane from a mixtur ctane and isooctane. utline how this technique separates isooctane from octane.	e of
Na	utline how this technique separates isooctane from octane.	
\circ	ame	
O	utline	
	ooctane is added to petrol to increase its octane rating. Some high-performance ngines require fuel with a higher octane rating.	
	rite an equation for the complete combustion of isooctane. Use the molecular form ${\rm C_8H_{18}}$) of isooctane in your equation.	ula
Ex	xplain, in general terms, how a catalyst works.	
	arbon monoxide is produced when incomplete combustion takes place in engines. trogen monoxide is another pollutant produced in car engines.	
	3 - 1 1	

plain why a thin layer is used in	n this wav.
p.a, a aa, ca acca	
	nt-chain fatty acid obtained from plant oils. Isooctane e skeletal formula of oleic acid is shown in Figure 2 .
	Figure 2
	ОН
entify a reagent that could be us saturated.	sed in a chemical test to show that oleic acid is
ate what would be observed in	this test.
eagent	

www.accesstuition.com