

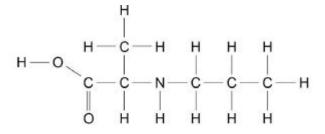
A-Level Chemistry

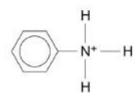
Amines

Mark Scheme

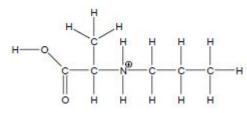
Time available: 58 minutes Marks available: 53 marks

www.accesstuition.com


Mark schemes


(a) One circled C atom only – The C attached to $CH_3/C=O/H$ and NH

1.


(b) Two ticks only for amine and amide

(c)

M1 for choosing the correct bond to hydrolyseM2 and M3 for the correct structures of the productsAllow protonated amino acid for M2

Allow $C_6H_5NH_3^+$ or + outside a square bracket

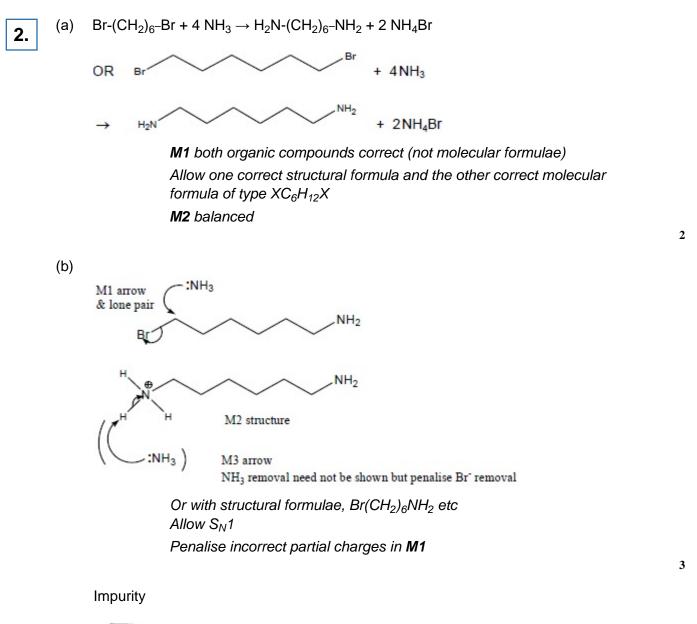
(d) M1 Enzyme has an active site

M2

The G-Enantiomer / Enzyme has the correct stereo chemistry / stereospecific Or

The G-Enantiomer / Enzyme has the complementary shape

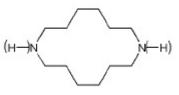
For M2 allow opposite argument for F-Enantiomer


[7]

3

1

1


1

(or as structural formula)

Allow

(c)	M1 Stage 1 reagent KCN or NaCN	
	Not HCN this loses M1 and M2	
	Any mention of acid loses M1 & M2	
		1
	M2 Stage 1 condition aqueous alcohol	
	M2 dependent on correct M1 (allow condition if only CN^{-} ions)	
		1
	M3 Stage 2 reagent & condition H_2 and Ni or Pt or Pd	
	M3 only accessible if a cyanide is used in stage 1	
		1
	Allow LiAlH ₄ (in dry ether) – acidic/aqueous = CE, but allow followed by acid.	
	NOT NaBH ₄ NOT Sn/HCl or Fe/HCl	
	Ignore heat and reflux and pressure	
	Apply list principle to incorrect reagents/conditions	
(d)	In 3-aminopentane	
. ,	Allow converse for ammonia	
	Lone pair on N more available or Lone pair on N accepts H ⁺ better	
	Or greater stability of protonated N	
		1
	because of alkyl electron pushing /inductive effect	
	Mark independently	
		1
(e)	No carbon (atom is) attached to 4 different groups	
	Allow central carbon has two alkyl groups	
	Allow symmetrical molecule	
		1
		[12]

(a)	(Strength depends on availability of) lone pair on N (atom)	M1
	E N (next to ring): (Ip) delocalised into ring	M1 M2
	(Ip) less available (to donate to or to accept a H ⁺)	M3
	F or G: N (next to alkyl): (positive) inductive effect/electrons pushed to N	M3
	(Ip) more available (to donate to or to accept a H ⁺)	M5
	order of increasing base strength E <g<f Or F is most basic and E is least basic</g<f 	1413
		M6
(b)	Intermediate compounds	
	Product of step 1 C-H-CH-Cl	

Product of step 1 $C_6H_5CH_1CI$ Allow $C_6H_5CH_2Br$

Product of step 2 C₆H₅CH₂CN

In steps 2 and 3, only allow marks for reagents/conditions if intermediate compounds are correct or close.

Reagents/conditions

Step 1

3.

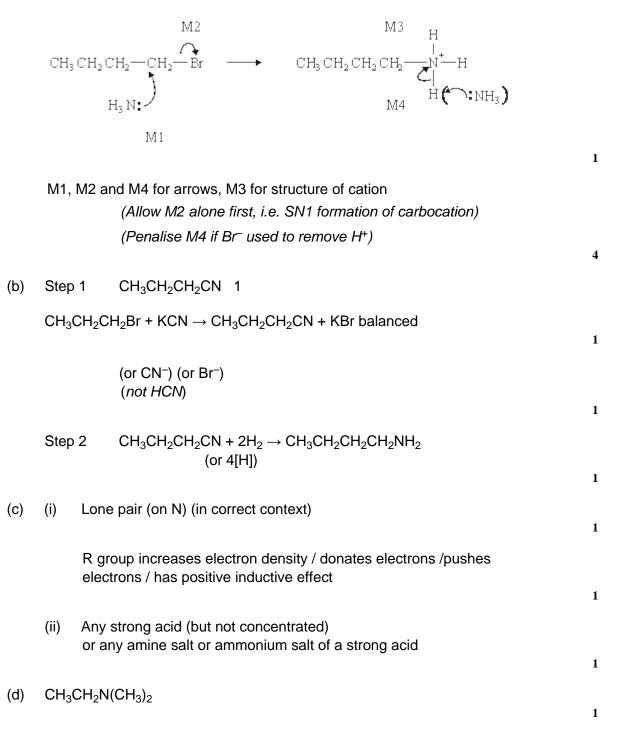
 $Cl_2 \& UV$

Allow Br₂ & UV

Step 2

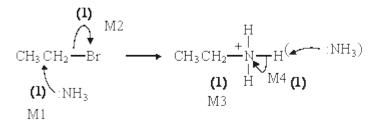
KCN alcoholic & aq (both reqd) Ignore temperature

Step 3


 $\rm H_2$ / Ni or Pt or Pd

Allow LiAlH₄ in (dry) ether – (with acid CE, followed by acid allow) Not NaBH₄ and not Sn/HCl or Fe/HCl

> 2 [11]


(a)

Nucleophilic substitution

[12]

5. ^(a)

Further reaction / substitution / formation of 2° / 3° amines etc (1) use an excess of NH₃ (1)

(b) (b) repels nucleophiles (such as NH³) (1) $\begin{pmatrix} CHNO_3 & (1) \\ CH_2SO_4 & (1) \\ 20 - 60^{\circ}C & (1) \end{pmatrix} \xrightarrow{any}_{2} & (1) \\ (1) \end{pmatrix} \xrightarrow{Sn/HCl} & (1) \\ (1) \end{pmatrix} \xrightarrow{NH_2}_{2} \\ (1) \end{pmatrix}$

Notes

- (a) allow S_N1
 penalise: Br[−] intead of NH₃ removing H⁺ for M4
 not contamination with *other amines* (this is in the question) not diamines
- (b) allow because NH₃ is a nuclephile or benzene is (only) attacked by electrophiles or C–Br bond (in bromobenzene) is stronger / less polar or Br lp delocalized

 HNO_3 / H_2SO_4 without either conc scores (1) allow 20 – 60° for (1) (any 2 ex 3)

allow name or structure of nitrobenzene

other reducing agents: Fe or Sn with HCl (conc or dil or neither) not conc H_2SO_4 or conc HNO_3 allow Ni/ H_2 Not NaBH₄ or LiAlH₄ ignore wrong descriptions for reduction step e.g. hydrolysis or hydration

[11]

6

Organic points

 <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

(2) <u>Structures</u>

Penalise once per paper