
 A-Level Chemistry

Balanced Equations

Mark Scheme

Time available: 65 minutes Marks available: 57 marks

www.accesstuition.com

Mark schemes

1. amount of $\mathrm{CaS}=\frac{2.50}{72.2}=0.0346 \mathrm{~mol}$

M1: amount of CaS
amount of $\mathrm{CaSO}_{4}=\frac{9.85}{136.2}=0.0723 \mathrm{~mol}$ M2: amount of CaSO_{4}

3 mol of CaSO_{4} needed for each mol of CaS , and $\mathrm{n}\left(\mathrm{CaSO}_{4}\right)$ is not $3 \times \mathrm{n}(\mathrm{CaO})$ (so CaSO_{4} is the limiting reagent)

M3: limiting reagent justification
$\mathrm{n}\left(\mathrm{SO}_{2}\right)=\mathrm{n}\left(\mathrm{CaSO}_{4}\right) \times \frac{4}{3}=0.0964 \mathrm{~mol}$
M4: moles of $\mathrm{CaSO}_{4} \times 4 / 3$
mass of $\mathrm{SO}_{2}=\mathrm{n}\left(\mathrm{SO}_{2}\right) \times 64.1=6.18 \mathrm{~g}$
M5: $M 4 \times 64.1$
If CaS used as limiting reagent then allow M4 and M5 ecf.
Must look for M1 and M3
2. (a) M 1 : Mean titre $=\frac{20.25+20.30}{2}=20.275 \mathrm{~cm}^{3}$

Allow M1 $=20.28 \mathrm{~cm}^{3}$

M2 Amount of $\mathrm{NaOH}=0.35 \times(20.275 \div 1000)=0.00709625 \mathrm{~mol}$
Amount of ethanoic acid in $25 \mathrm{~cm}^{3}=0.00709625 \mathrm{~mol}$

$$
M 2=M 1 \times 10^{-3} \times 0.35
$$

M3 Amount of ethanoic acid in $200 \mathrm{~cm}^{3}=0.05677 \mathrm{~mol}$

$$
M 3=M 2 \times 8
$$

M4 Mass of ethanoic acid in sample $=60.0 \times 0.05677=3.4062 \mathrm{~g}$

$$
M 4=M 3 \times 60.0
$$

M5 Mass of sodium ethanoate $=5.6-3.4062=2.1938 \mathrm{~g}$

$$
M 5=5.6-M 4
$$

M6 percentage $\mathrm{CH}_{3} \mathrm{COONa}=(2.1938 \div 5.6) \times 100=39.1 \%$
$M 6=(M 5 \div 5.6) \times 100$
(39.1-39.2)

Accept alternative methods
M5 $=(M 4 \div 5.6) \times 100)$ followed by $M 6=100-M 51$
(b) M1 Titre value would increase / larger value

M2 Because the sodium hydroxide solution would be more dilute

3. Percentage yield

M1 reactant moles $=\frac{1.00}{116.0}(=0.00862)$
Correct M3 scores M1-3
Numerical answers to at least 2sf
Allow ECF in M1-M3

M2 product moles $=\frac{0.552}{72.0} \quad(=0.00767)$
Alternative for M2/3
M2 expected mass of product $=0.00862 \times 72.0(=0.621 \mathrm{~g})$

M3 \% yield $=\frac{0.00767}{0.00862}=88.9(3)$ or 89%

Alternative for M2/3

M3 \% yield $=\left(\frac{0.552}{0.621} \times 100\right)=88.9(3)$ or 89%

M4 idea of getting as much product as possible in the reaction / idea of efficient conversion of reactants to products

Atom economy

M5 $\left(\frac{72.0}{74.0+34.0} \times 100\right)=\left(\frac{72.0}{108.0} \times 100\right)=66.7 \%$
Alternative for M5: $\left(\frac{72.0}{72.0+36.0} \times 100\right)$

M6 idea of maximising the mass of reactants / atoms that ends up in desired product or idea of minimising the amount of by-products
4. (a) M1 $n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)=33.50 \times 0.100 \div 1000=\underline{0.00335}$

1
M2 $n\left(\mathrm{I}_{2}\right)=0.00335 \div \mathbf{2}=0.001675$ (from eqn 2)

$$
\text { M2 = M1 } \div 2
$$

M3 $\mathrm{n}\left(\mathrm{ClO}^{-}\right)$in $25 \mathrm{~cm}^{3}$ pipette $=0.001675$ (from eqn 1)
M3 = M2

M4 $\mathrm{n}\left(\mathrm{ClO}^{-}\right)$in $100 \mathrm{~cm}^{3}$ flask $=0.001675 \underline{\mathbf{x} 4}=0.00670=\mathrm{n}(\mathrm{NaClO})$ in original $10 \mathrm{~cm}^{3}$ sample

M4 $=$ M3 $\times 4$

M5 mass $(\mathrm{NaClO})=0.00670 \underline{\mathrm{x} 4.5}=0.499 \mathrm{~g}$
$\boldsymbol{M 5}=\boldsymbol{M 4} \underline{\mathbf{x} 74.5}$

M6 mass $($ bleach $)=10.0 \times 1.20=\underline{12} \mathrm{~g}$
M6 = mass of bleach

M7 \% by mass of $\mathrm{NaClO}=\frac{0.499}{12}=4.16 \%$
M7 $=($ M5 \div M6) $\times 100$ to 3 significant figures
Allow 4.15% to 4.17%
(b) 0.45%
5. (a) Average titre $=26.45 \mathrm{~cm}^{3}$

M1 = average of concordant titres

$$
\begin{aligned}
\mathrm{n}(\mathrm{NaOH})= & (25 \times 0.112 / 1000)=2.80 \times 10^{-3} \mathrm{~mol} \\
& M 2-\text { this value only }
\end{aligned}
$$

$\mathrm{n}($ acid in titre $)=2.80 \times 10^{-3} / 2=1.40 \times 10^{-3} \mathrm{~mol}$

$$
M 3=M 2 / 2
$$

1
$\mathrm{n}\left(\right.$ acid in $\left.250 \mathrm{~cm}^{3}\right)=1.40 \times 10^{-3} \times 250 / 26.45=0.0132 \mathrm{~mol}$
$M 4=M 3 \times 250 / M 1$
1
$M_{r}=$ mass $/$ moles $=1.300 / 0.0132=98.2-98.5$
M5 = (1.300/M4) $=$ answer
Mr must be given to at least 1 dp
Alternatives:
98.6 - scores 4
92.9 - scores 4
87.8 - scores 3
49.3 - scores 3
49.1 - scores 4
(b) $\%$ uncertainty $=0.06 / 25.0 \times 100=0.24 \%$
(c) Some solution/acid replaces air bubble /

Solution/acid fills below the tap /
Air bubble takes up volume that would be filled by solution/acid
Score for the idea that:
Acid/solution replaces air/bubble/fills jet space
Allow acid/solution fills the bubble/gap
'The final reading is higher than the volume added' is not enough.
(d) Does not react (with the alkali) / does not change the number of moles (of alkali)

Allow water is a product / water is not a reagent
1
6. (a) Equation: $2 \mathrm{Mg}+\mathrm{TiCl}_{4} \rightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}$

Allow multiples / ignore ss

Role: Reducing agent
Allow electron donor (not electron pair donor)
(b) M1: moles of water in $210 \mathrm{mg} \quad=$ mass $/ \mathrm{mr}=0.210 / 18$

$$
=\underline{0.0117} \mathrm{~mol} \text { ONLY }
$$

Equal to moles of magnesium hydroxide produced in stage one
M2: mass of $\mathrm{Mg}(\mathrm{OH})_{2}=0.0117 \times 58.3=0.680 \mathrm{~g}$
M3: mass of MgO = $3.2-0.68$

$$
=2.52 \mathrm{~g}
$$

M1 = moles of water
$\mathbf{M 2}=$ mass of $\mathrm{Mg}(\mathrm{OH})_{2}=\mathbf{M 1} \times 58.3$
$\mathbf{M 3}=$ subtraction $=3.2$ - M2
M4 = answer to M3 x 100/3.2
Accept correct alternative methods such as
M1 = moles of water
$\mathbf{M 2}=$ mass of $\mathrm{Mg}(\mathrm{OH})_{2}=\mathbf{M 1} \times 58.3$
M3 = M2 \times 100/3.2
M4 = $\mathbf{1 0 0} \mathbf{- M 3}$
M4: \% of $\mathrm{MgO}=2.52 / 3.2 \times 100=78.7 \%$
M4: Allow $78.7-78.8$ or 79 \%
7. (a) M1 Amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\frac{9.00 \times 0.0800}{1000}=7.20 \times 10^{-4} \mathrm{~mol}$

1
(From equations mol $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\mathrm{mol} \mathrm{Cu}^{2+}$)
M2 Amount of Cu^{2+} in $25 \mathrm{~cm}^{3}=7.20 \times 10^{-4} \mathrm{~mol}$
M2 = answer to M1 (1:1 ratio)

M3 Amount of Cu^{2+} in $250 \mathrm{~cm}^{3}=7.20$ v $10^{-4} \times \mathbf{1 0}=7.20 \times 10^{-3} \mathrm{~mol}$

$$
M 3=M 2 \times 10
$$

M4 Mass of copper $=7.20 \times 10^{-3} \mathrm{~mol} \times \mathbf{6 3 . 5}=0.457 \mathrm{~g}$

$$
\mathbf{M 4}=\mathbf{M 3} \times 63.5
$$

M5 mass $=0.985 \mathrm{~g}$
M5 converting 985 mg to g
$\begin{aligned} \mathbf{M 6} \% \mathrm{Cu}= & 0.457 \times \frac{100}{0.985}=46.4 \% \\ & \text { M6 is for the answer to } \mathbf{3} \boldsymbol{s f}\end{aligned}$
Allow \% Cu $=457 \times \frac{100}{985}=46.4 \%$ for M5 and M6
Allow (M4 $\times 1000$)/985 v 100 for M5 and M6
(b) Use more of the alloy

Use a lower concentration of the thiosulfate solution/lower mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ to make solution
(c) Oxidizing agent

Allow electron acceptor

> 位
(d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$

Do not allow [Ar]3d ${ }^{9}$
(e) Full (3)d (sub)shell or (3) d^{10}

No (d-d) transitions possible/ cannot absorb visible/white light M2 is dependent on M1 Ignore reflects visible/white light
(f) $\quad \mathbf{M} 1: \mathrm{n}=(5.00 / 253.8)=0.0197 \mathrm{~mol}$

Allow 254
If 126.9 or 127 used lose M1 only

M2: $T=458 \mathrm{~K}$ and $\mathrm{P}=100000 \mathrm{~Pa}$
$\mathbf{M 3} \mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}$ or $\frac{0.0197 \times 8.31 \times 458}{100000}$ or $7.50 \times 10^{-4}\left(\mathrm{~m}^{3}\right)$ M3 If rearrangement incorrect can only score M1 and M2

M4: $V=750\left(\mathrm{~cm}^{3}\right)$
M4: Allow M3 $\times 10^{6}$
M4: Allow 749
[16]

