

# **A-Level Chemistry**

## **Balanced Equations**

**Mark Scheme** 

Time available: 65 minutes Marks available: 57 marks

www.accesstuition.com

### Mark schemes

amount of CaS = 
$$\frac{2.50}{72.2}$$
 = 0.0346 mol

M1: amount of CaS

amount of CaSO<sub>4</sub> =  $\frac{9.85}{136.2}$  = 0.0723 mol

M2: amount of CaSO<sub>4</sub>

1

1

3 mol of CaSO<sub>4</sub> needed for each mol of CaS, and  $n(CaSO_4)$  is not 3 × n(CaO) (so CaSO<sub>4</sub> is the limiting reagent)

M3: limiting reagent justification

1

$$n(SO_2) = n(CaSO_4) \times \frac{4}{3} = 0.0964 \text{ mol}$$

M4: moles of CaSO<sub>4</sub> × 4/3

1

1

mass of 
$$SO_2 = n(SO_2) \times 64.1 = 6.18g$$

 $M5: M4 \times 64.1$ 

If CaS used as limiting reagent then allow M4 and M5 ecf. Must look for M1 and M3

[5]

2.

(a) M1: Mean titre =  $\frac{20.25+20.30}{2}$  = 20.275 cm<sup>3</sup>

Allow  $M1 = 20.28 \text{ cm}^3$ 

M2 Amount of NaOH =  $0.35 \times (20.275 \div 1000) = 0.00709625$  mol

Amount of ethanoic acid in  $25 \text{ cm}^3 = 0.00709625 \text{ mol}$ 

$$M2 = M1 \times 10^{-3} \times 0.35$$

1

1

M3 Amount of ethanoic acid in 200  $cm^3 = 0.05677$  mol

$$M3 = M2 \times 8$$

1

M4 Mass of ethanoic acid in sample =  $60.0 \times 0.05677 = 3.4062 \text{ g}$ 

$$M4 = M3 \times 60.0$$

1

M5 Mass of sodium ethanoate = 5.6 - 3.4062 = 2.1938 g

$$M5 = 5.6 - M4$$

1

M6 percentage  $CH_3COONa = (2.1938 \div 5.6) \times 100 = 39.1 \%$ 

$$M6 = (M5 \div 5.6) \times 100$$

$$(39.1 - 39.2)$$

Accept alternative methods

$$M5 = (M4 \div 5.6) \times 100)$$
 followed by  $M6 = 100 - M5.1$ 

1

(b) M1 Titre value would increase / larger value

1

1

M2 Because the sodium hydroxide solution would be more dilute

[8]

3.

#### Percentage yield

**M1** reactant moles =  $\frac{1.00}{116.0}$  ( = 0.00862)

Correct M3 scores M1-3

Numerical answers to at least 2sf

Allow ECF in M1-M3

1

**M2** product moles =  $\frac{0.552}{72.0}$  ( = 0.00767)

Alternative for M2/3

**M2** expected mass of product =  $0.00862 \times 72.0 \ (= 0.621 \ g)$ 

**M3** % yield = 
$$\frac{0.00767}{0.00862}$$
 = 88.9(3) or 89%

#### Alternative for M2/3

**M3** % yield = 
$$\binom{0.552}{0.621}$$
 x 100) = 88.9(3) or 89%

**M4** idea of getting as much product as possible in the reaction / idea of efficient conversion of reactants to products

#### **Atom economy**

M5 
$$\left(\frac{72.0}{74.0+34.0} \times 100\right) = \left(\frac{72.0}{108.0} \times 100\right) = 66.7\%$$

Alternative for M5: 
$$\left(\frac{72.0}{72.0+36.0} \times 100\right)$$

M6 idea of maximising the mass of reactants / atoms that ends up in desired product or idea of minimising the amount of by-products

[6]

1

1

1

1

1

1

1

1

1

1

1

**4.** (a) **M1** 
$$n(S_2O_3^{2-}) = 33.50 \times 0.100 \div 1000 = \underline{0.00335}$$

**M2** 
$$n(l_2) = 0.00335 \div 2 = 0.001675 \text{ (from eqn 2)}$$
  
**M2** = **M1** ÷ 2

**M3**  $n(CIO^{-})$  in 25 cm<sup>3</sup> pipette = 0.001675 (from eqn 1)

$$M3 = M2$$

**M4**  $n(CIO^{-})$  in 100 cm<sup>3</sup> flask = 0.001675  $\underline{x} \cdot \underline{4} = 0.00670 = n(NaCIO)$  in original 10 cm<sup>3</sup> sample

$$M4 = M3 \times 4$$

**M5** mass (NaClO) =  $0.00670 \times 74.5 = 0.499 \text{ g}$ 

$$M5 = M4 \times 74.5$$

**M6** mass (bleach) =  $10.0 \times 1.20 = 12 \text{ g}$ 

**M7** % by mass of NaClO =  $\frac{0.499}{12}$  = 4.16 %

$$M7 = (M5 \div M6) \times 100 \text{ to 3 significant figures}$$
  
Allow 4.15% to 4.17%

www.accesstuition.com

[8]

1

5.

(a) Average titre =  $26.45 \text{ cm}^3$ 

*M1* = average of concordant titres

1

 $n(NaOH) = (25 \times 0.112 / 1000) = 2.80 \times 10^{-3} \text{ mol}$  $M2 - this \ value \ only$ 

1

n(acid in titre) =  $2.80 \times 10^{-3} / 2 = 1.40 \times 10^{-3}$  mol M3 = M2/2

1

n(acid in 250 cm<sup>3</sup>) =  $1.40 \times 10^{-3} \times 250/26.45 = 0.0132$  mol  $M4 = M3 \times 250/M1$ 

1

 $M_{\rm r}$  = mass / moles = 1.300/0.0132 = 98.2-98.5

M5 = (1.300/M4) = answer

Mr must be given to at least 1dp

1

Alternatives:

98.6 - scores 4

92.9 - scores 4

87.8 - scores 3

49.3 - scores 3

49.1 – scores 4

1

(b) % uncertainty =  $0.06/25.0 \times 100 = 0.24 \%$ 

1

(c) Some solution/acid replaces air bubble /

Solution/acid fills below the tap /

Air bubble takes up volume that would be filled by solution/acid

Score for the idea that:

Acid/solution replaces air/bubble/fills jet space

Allow acid/solution fills the bubble/gap

'The final reading is higher than the volume added' is not enough.

1

1

(d) Does not react (with the alkali) / does not change the number of moles (of alkali)

Allow water is a product / water is not a reagent

[8]

6.

(a) Equation:  $2 \text{ Mg} + \text{TiCl}_4 \rightarrow \text{Ti} + 2 \text{ MgCl}_2$ Allow multiples / ignore ss

**3** • • • •

Role: Reducing agent

Allow electron donor (not electron pair donor)

1

1

(b) **M1**: moles of water in 210 mg = mass / mr = 0.210 / 18 = <u>0.0117</u> mol ONLY

Equal to moles of magnesium hydroxide produced in stage one

**M2**: mass of Mg(OH)<sub>2</sub> = 0.0117 x 58.3 = 0.680 g

**M3**: mass of MgO = 3.2 - 0.68

= 2.52 g

M1 = moles of water

 $M2 = mass of Mg(OH)_2 = M1 \times 58.3$ 

M3 = subtraction = 3.2 - M2

 $M4 = answer to M3 \times 100/3.2$ 

Accept correct alternative methods such as

M1 = moles of water

 $M2 = mass of Mg(OH)_2 = M1 \times 58.3$ 

 $M3 = M2 \times 100/3.2$ 

M4 = 100 - M3

**M4**: % of MgO = 2.52/3.2 x 100 = 78.7%

**M4**: Allow 78.7 – 78.8 or 79 %

[6]

4



M2 is dependent on M1

Ignore reflects visible/white light

1

(f) M1: n = (5.00/253.8) = 0.0197 mol

Allow 254

If 126.9 or 127 used lose M1 only

M2: T = 458 K and P = 100 000 Pa

1

M3 V = \frac{nRT}{P} \text{ or } \frac{0.0197 \times 8.31 \times 458}{100 000} \text{ or } 7.50 \times 10^4 \text{ (m}^3)

M3 If rearrangement incorrect can only score M1 and M2

1

M4: V = 750 (cm^3)

M4: Allow M3 \times 10^6

M4: Allow 749

[16]