

A-Level Chemistry

Bond Enthalpies

Mark Scheme

Time available: 66 minutes Marks available: 63 marks

www.accesstuition.com

Mark schemes

1.	(a)	Heat (energy) <u>change at constant pressure</u> allow transfer for change	1	
	(b)	 M1 correctly showing how many of which types of bonds are broken / made (broken) 2(C–C) + 8(C–H) + 5(O=O) (5776 + 2(C-C)) M1 is for identifying the number and type of bonds broken / made (does not have to explicit if they are broken or made, it is just which bonds and the number of each) (made) 6(C=O) + 8(O–H) (8162) 	1	
		M2 including 4(41) for vaporisation of water		
		M2 is for including 4(41) in some way in the calculation	1	
		M3 2(C–C)		
		= $6(C=O) + 8(O-H) + 4(41) - 2046 - 8(C-H) - 5(O=O)$ = $6(743) + 8(463) + 4(41) - 2046 - 8(412) - 5(496)$ = 504 M3 is for calculating total for C-C bonds; allow 340 for 2 marks for omitting 4(41)		
			1	
		 M4 (C-C) = M3/2 = 252 (kJ mol⁻¹) M4 is for dividing their M3 by two (ie allow ECF from M3 to M4; ECF for 3(C-C) to divide their M3 by three) 252 scores 4 170 scores 3 (omits vaporisation of water) 168 scores 3 (3 C-C bonds) 113 scores 2 (3 C-C bonds & omits vaporisation of water) 88 scores 3 (vaporisation of water on wrong side) 		
		Ignore units	1	
	(c)	Oxygen / O_2 is the only substance that has O=O bond	1	[6]
2.	(a)	$2Fe(s) + \frac{3}{2}O_2(g) \longrightarrow Fe_2O_3(s) ONLY$		
_ <u> </u>		Don't allow multiples. States must be shown	1	

	(b)	M1	Correct cycle or equation If M1 and M2 not awarded then M3 can be awarded for their M2 divided by 3		
		M2	$(3 \times \Delta_f HCO_2) = -19 + (-822) + 3(-111) - 0$ $(3 \times \Delta_f HCO_2) = -1174$	1	
		М3	$\Delta_f HCO_2 = -391 \text{ kJ mol}^{-1}$ -317 for 1 mark +391 for 1 mark		
			Allow 2 sig fig or more	1	
	(c)	M1	Correct Hess's law cycle or equation If M1 and M2 not awarded then M3 can be awarded for their M2 divided by 6		
		M2	(6(N-H)) = 944 + 3(+436) + 92 (6(N-H)) = 2344 -391 for 1 mark	1	
		М3	N-H = (+)391 kJ mol ⁻¹ Allow 2 sig fig or more	1 1	
	(d)		book value derived from (a number of) different compounds (not just different molecules)	1	
					[8]
3.	(a)	C ₂ H ₅ ($OH(I) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(I)$ 1 mark for correct formulae and balancing	1	
			1 mark for all correct state symbols	1	
	(b)	(Star	ndard) enthalpy of formation	1	
		Diffic	ult to prevent C reacting with O_2 to form some CO_2	1	
	(c)		$\Sigma \Delta H_{\rm C}$ reactants – Σ $\Delta H_{\rm C}$ products or a correct cycle	1	
			$\Delta H = -393 - (-283)$		
		∆ <i>H</i> =	–110 (kJ mol ^{–1)}	1	

	(a)	Correctly drawn Hess's law cycle	1	
		4 (Xe–F) = 252 + (2 × 158) = 568		
		Xe-F = 568 / 4		
		$Xe-F = 142 (kJ mol^{-1})$	1	
	(e)	Mean bond enthalpy found by taking an average for Xe–F in a range of compounds	1	[10]
4.	(a)	$C(s) + 2F_2(g) \longrightarrow CF_4(g)$ State symbols essential	1	[10]
	(b)	Around carbon there are 4 bonding pairs of electrons (and no lone pairs)	1 1	
		Therefore, these repel equally and spread as far apart as possible	1	
	(c)	$\Delta H = \Sigma \Delta_f H$ products – $\Sigma \Delta_f H$ reactants or a correct cycle	1 1	
		Hence = $(2 \times -680) + (6 \times -269) - (x) = -2889$	1	
		x = 2889 − 1360 − 1614 = −85 (kJ mol ⁻¹)	1	
		Score 1 mark only for +85 (kJ mol ^{-1})		
	(d)	Bonds broken = 4(C–H) + 4(F–F) = 4 × 412 + 4 × F–F		
		Bonds formed = $4(C-F) + 4(H-F) = 4 \times 484 + 4 \times 562$ Both required	1	
		$-1904 = [4 \times 412 + 4(F-F)] - [4 \times 484 + 4 \times 562]$		
		$4(F-F) = -1904 - 4 \times 412 + [4 \times 484 + 4 \times 562] = 632$		
		F–F = 632 / 4 = 158 (kJ mol ⁻¹)	1	
		The student is correct because the F–F bond energy is much less than the C–H or other covalent bonds, therefore the F–F bond is weak / easily broken		
		Relevant comment comparing to other bonds (Low activation energy needed to break the F–F bond)		
			1	

[10]

www.accesstuition.com

	(a)	The	enthalpy (change) to break <u>1 mol</u> of H—O / bonds Allow heat energy	1
		Avei	raged over a range of compounds / molecules Penalise energy but mark on ignore states CE = 0 for ionic bonds	1
	(b)	H ₂ +	$\frac{1}{2}O_2 \longrightarrow H_2O$	
		Δ <i>H</i> =	= (H-H) + $\frac{1}{2}$ (O = O) – 2(H–O) / sum of (bonds broken) – sum of (bonds formed)	1
		= 43	6 + 496 / 2 - 2 × 464	1
		= -2	244 (kJ mol ^{−1}) Allow 1 mark only for +244 and −488 Units not essential but penalise incorrect units	1
	(c)	(i)	same reaction / same equation / same number / same reactants and same products / same number and type of bonds broken and formed Do not allow similar	I
		(ii)	 There must be a slight difference between the actual bond enthalpy (in water) and mean bond enthalpies for the O-H bond (in other molecules) Allow bond enthalpy value for enthalpy of formation may not be under standard conditions. Allow reference to bond energy rather than bond enthalpy Do not allow heat loss or experimental error Do not allow mean bond enthalpies are not accurate 	1
]	(a)	(i)	$\Delta H = \Sigma$ bonds broken $-\Sigma$ bonds formed	
			$= 944/2 + 3/2 \times 436 - 3 \times 388$	
			= -38 (kJ mol ⁻¹) ignore units even if incorrect correct answer scores 3 -76 scores 2/3 +38 scores 1/3	
			www.accesstuition.com	

www.accesstuition.com

Page 6 of 9

[7]

5.

6.

			www.accesstuition.com	I	
		= -46.5 k	sJ mol ⁻¹	1	
		∆Hf = [(9	945 × 0.5) + (426 × 1.5)] – (391 × 3)	1	
7.	(a)	Equation	$1/2N_2 + 3/2H_2 \rightarrow NH_3$	1	[11]
		lf a	nswer to (c) (i) is negative: feasible / spontaneous if no answer to (c) (i) award zero marks	1	
			nswer to (c) (i) is positive: not feasible / not spontaneous		
			• –112 gives 43 to 44 kJ mol ^{–1} (scores 3/3)	1	
			 –199 gives 113 to 114 kJ mol⁻¹ (scores 3/3) 		
			if answer to part (b) is wrong or if -112 used, mark consequentially e.g.		
			correct units for answer essential		
		kJ ı	mol ⁻¹ with J mol ⁻¹		
			allow 33 to 34 (or 33000 to 34000)	1	
		= 3	3.6 or 33600		
				1	
			mark is for putting in numbers with 1000 if factor of 1000 used incorrectly CE = 0		
	(c)	(i) ∆ <i>G</i>	$= \Delta H - T\Delta S = -46 + 800 \times 99.5/1000$		
	(-)	(;)		1	
			–199 and + 99.5 J K ⁻¹ mol ⁻¹ score 1/3		
			–199 J K ^{–1} mol ^{–1} & –99.5 score 2/3		
			correct answer with units scores 3		
		99.0 0	units essential for M3		
		00 5	J K ^{−1} mol ^{−1}	-	
		= 193 – (192/2 + 131 × 3/2)	1	
	(b)	$\Delta S = \Sigma S$	products – Σ S reactants	1	
		as	ingle compound / ammonia	1	
			an / average bond enthalpies differ from those in		
		of c	an / average bond enthalpies are from a range compounds		
		(;;)	en / everene hand antholaise are from a rease		

Mark Range	The marking scheme for this part of the question includes an overall assessment for the Quality of Written Communication (QWC). There are no discrete marks for the assessment of QWC but the candidates' QWC in this answer will be one of the criteria used to assign a level and award the marks for this part of the question Descriptor an answer will be expected to meet most of the criteria in the level descriptor
4-5	 claims supported by an appropriate range of evidence
	 good use of information or ideas about chemistry, going beyond those given in the question
	 argument well structured with minimal repetition or irrelevant points
	 accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling
2-3	 claims partially supported by evidence
	 good use of information or ideas about chemistry given in the question but limited beyond this
	 the argument shows some attempt at structure
	 the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling
0-1	 valid points but not clearly linked to an argument structure
	 limited use of information or ideas about chemistry
	- unstructured
	 errors in spelling, punctuation and grammar or lack of fluency

(b)	The higher the temperature the faster the reaction QWC		
		1	
	but, since the reaction is exothermic	1	
	the equilibrium yield is lower QWC	1	
	The higher the pressure the greater the equilibrium yield QWC	-	
	because there is a reduction in the number of moles of gas in the reaction	1	
		1	
	but higher pressure is expensive to produce or plant is more expensive to build QWC		
		1	
	A better catalyst would lessen the time to reach equilibrium	1	
	and allow more ammonia to be produced in a given time QWC	1	
		•	[11]