

A-Level Chemistry

Bond Enthalpies

Question Paper

Time available: 66 minutes Marks available: 63 marks

www.accesstuition.com

1.

This question is about enthalpy changes.

(a) Define the term enthalpy change.

(1)

(b) Propane undergoes complete combustion.

$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(I)$$
 $\Delta H = -2046 \text{ kJ mol}^{-1}$

The table below shows some bond enthalpy data.

Bond	C–H	C=O	O–H
Mean bond enthalpy / kJ mol ⁻¹	412	743	463

The bond enthalpy for O=O is 496 kJ mol⁻¹

For
$$H_2O(I) \longrightarrow H_2O(g) \Delta H = +41 \text{ kJ mol}^{-1}$$

Use these data to calculate a value for the C–C bond enthalpy in propane.

C–C bond enthalpy _____ kJ mol⁻¹

(4)

(c)	Explain wny	the value given for the O-	O bond enthalpy in par	t (b) is not a mean value	e.
				(та	otal 6 ma
This	question is a	bout energetics.			
(a)	-	uation, including state sym lpy of formation for iron(III)		ith an enthalpy change e	equal
(b)	Table 1 con	tains some standard entha	alpy of formation data.		
			Table 1		
			Table 1 CO(g)	Fe ₂ O ₃ (s)	
		Δ _f H ^e / kJ mol ⁻¹		Fe ₂ O ₃ (s)	
	Fe ₂ O ₃ (s) + 3	$\Delta_f H^{\Theta} / \text{ kJ mol}^{-1}$ $3CO(g) \longrightarrow 2Fe(s) + 3CO_2$	CO(g) -111	-822	
	Use these d	<u> </u>	$CO(g)$ -111 (g) $\Delta H = -1$ The reaction of iron(III) oxides	-822 -19 kJ mol ⁻¹ xide with carbon monoxi	de to
	Use these d	$3CO(g) \longrightarrow 2Fe(s) + 3CO_2$ Iata and the equation for the value for the standard enth	$CO(g)$ -111 (g) $\Delta H = -1$ The reaction of iron(III) oxides	-822 -19 kJ mol ⁻¹ xide with carbon monoxi	de to
	Use these d	$3CO(g) \longrightarrow 2Fe(s) + 3CO_2$ Iata and the equation for the value for the standard enth	$CO(g)$ -111 (g) $\Delta H = -1$ The reaction of iron(III) oxides	-822 -19 kJ mol ⁻¹ xide with carbon monoxi	de to
	Use these d	$3CO(g) \longrightarrow 2Fe(s) + 3CO_2$ Iata and the equation for the value for the standard enth	$CO(g)$ -111 (g) $\Delta H = -1$ The reaction of iron(III) oxides	-822 -19 kJ mol ⁻¹ xide with carbon monoxi	de to
	Use these d	$3CO(g) \longrightarrow 2Fe(s) + 3CO_2$ Iata and the equation for the value for the standard enth	$CO(g)$ -111 (g) $\Delta H = -1$ The reaction of iron(III) oxides	-822 -19 kJ mol ⁻¹ xide with carbon monoxi	de to
	Use these d	$3CO(g) \longrightarrow 2Fe(s) + 3CO_2$ Iata and the equation for the value for the standard enth	$CO(g)$ -111 (g) $\Delta H = -1$ The reaction of iron(III) oxides	-822 -19 kJ mol ⁻¹ xide with carbon monoxi	de to

(c) Some enthalpy data are given in **Table 2**.

3.

Table 2

Process	ΔH / kJ mol ^{−1}
$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	-92
$N_2(g) \longrightarrow 2N(g)$	+944
$H_2(g) \longrightarrow 2H(g)$	+436

Use the data from **Table 2** to calculate the bond enthalpy for N-H in ammonia.

(3)
the
40
(1) al 8 marks)
al

(2)

(b)	State the name given to the enthalpy change equation.	represented by the followin	g chemical	
	Explain why this enthalpy change would be o	lifficult to determine directly.		
	$C(s) + \frac{1}{2}O_2(g)$	$\rightarrow CO(g)$		
	Enthalpy change			
	Explanation			
				(2)
(c)	Standard enthalpies of combustion for carbon –283 kJ mol ⁻¹ , respectively.	and carbon monoxide are	−393 kJ mol ^{−1} and	
	Use these data to calculate the enthalpy cha	nge for the reaction in part ((b).	
		Enthalpy change =	kJ mol ⁻¹	(2)
(d)	Use the following data to calculate a value for	the Xe-F bond enthalpy in	XeF ₄	
	$Xe(g) + 2F_2(g) \rightarrow XeF_4(g)$			
	$F_2(g) \rightarrow 2F(g)$	$\Delta H = +158 \text{ kJ mol}^{-1}$		
			4	
		Xe–F bond enthalpy =	kJ mol ⁻¹	(3)

	(e)	enthalpy quoted in a data source.	ona
			_
			_ (1) ⁻ otal 10 marks)
4.	(a)	Write an equation, including state symbols, for the reaction with enthalpy change equal to the standard enthalpy of formation for ${\sf CF_4}(g)$.	otal 10 marks,
	(b)	Explain why CF ₄ has a bond angle of 109.5°.	
			_
			_
			_
			(2)

(c) **Table 1** gives some values of standard enthalpies of formation $(\Delta_f H^{\Theta})$.

Table 1

Substance	F ₂ (g)	CF ₄ (g)	HF(g)
Δ _f H ^Θ / kJ mol ⁻¹	0	-680	-269

The enthalpy change for the following reaction is −2889 kJ mol⁻¹.

$$C_2H_6(g) + 7F_2(g) \longrightarrow 2CF_4(g) + 6HF(g)$$

Use this value and the standard enthalpies of formation in **Table 1** to calculate the standard enthalpy of formation of $C_2H_6(g)$.

Standard enthalpy of formation of
$$C_2H_6(g) =$$
_____ kJ mol⁻¹

(3)

(d) Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in **Table 2**.

Table 2

Bond	C-H	C-F	H-F
Mean bond enthalpy / kJ mol⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F-F bond.

Is the student correct? Justify your answer with a calculation using these data.

(4)

(Total 10 marks)

5. The table contains some bond enthalpy data.

Bond	Н-Н	O=O	H-O
Bond enthalpy / kJ mol ⁻¹	436	496	464

(a)	The value for the H-C	bond enthalpy in	the table is a r	mean bond enthalpy.
-----	-----------------------	------------------	------------------	---------------------

State the meaning of the term **mean bond enthalpy** for the H–O bond.

(2)

-,		
	standard enthalpy of combustion of hydrogen, forming water in the gas phase, is ost the same as the correct answer to part (b).	
i)	Suggest one reason why you would expect the standard enthalpy of combustion o hydrogen to be the same as the answer to part (b).	f
ii)		f
ii)	Suggest one reason why you would expect the standard enthalpy of combustion or	f
ii)	Suggest one reason why you would expect the standard enthalpy of combustion or	f

6.

Ammonia can be manufactured by the Haber Process.

The equation for the reaction that occurs is shown below.

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

(a) The table below contains some bond enthalpy data.

	N = N	H–H	N–H
Mean bond enthalpy / kJ mol⁻¹	944	436	388

			
A more accurate value for –46 kJ mol ^{–1} .	the enthalpy of formati	on of ammonia is	
Suggest why your answer	to part (a) (i) is differer	nt from this value	

(1)

(b) The table below contains some entropy data.

	H ₂ (g)	N ₂ (g)	NH ₃ (g)
S ^e / J K ^{−1} mol ^{−1}	131	192	193

The	e synthesis of ammonia is usually carried out at about 800 K.
(i)	Use the ΔH value of -46 kJ mol ⁻¹ and your answer from part (b) to calculate a value for ΔG , with units, for the synthesis at this temperature. (If you have been unable to obtain an answer to part (b), you may assume that the entropy change is -112 J K ⁻¹ mol $^{-1}$. This is not the correct answer.)
(ii)	Use the value of ΔG that you have obtained to comment on the feasibility of the reaction at 800 K.

- A method of synthesising ammonia directly from nitrogen and hydrogen was developed by Fritz Haber. On an industrial scale, this synthesis requires a high temperature, a high pressure and a catalyst and is very expensive to operate.
 - (a) Use the data given below to calculate a value for the enthalpy of formation of ammonia

Bond	N≡N	H – H	N – H	
Mean bond enthalpy/kJ mol ⁻¹	945	436	391	

(3)

 	 	
		
		
 	 	 <u></u>