

A-Level Chemistry

Born-Haber Cycles

Mark Scheme

Time available: 61 minutes Marks available: 56 marks

Mark schemes

1. (a) Heat (energy) change at constant pressure Ignore conditions even if wrong Ignore energy change
(b) $\mathrm{M} 2 \mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{e}^{-}+\mathrm{Cl}_{2}(\mathrm{~g})$

Alternative $\mathrm{M} 2 \mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-}+2 \mathrm{Cl}(\mathrm{g})$
$\mathrm{M} 3 \mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g})$
$\mathrm{M} 1 \mathrm{Ca}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$
(c) $\mathrm{M} 1-795+\mathrm{LE}=193+590+1150+(2 \times 121)+(2 \times-364)$

Numbers and factors used correctly from cycle

M2 LE $=(+) 2242\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Rearrangement to calculate LE
If one or both factors of 2 missing award 1 mark for (+) 2485,
(+)2121 or (+)2606 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
Allow 1 mark for - $2242\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(d) $\quad \mathrm{MgCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$

Allow $\mathrm{MgCl}_{2}(\mathrm{~s})=\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}_{(\mathrm{aq})}$
Allow $\mathrm{MgCl}_{2}(\mathrm{~s})+\mathrm{aq} \rightleftharpoons \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
(e) $\mathrm{M} 1 \Delta H$ soln $\mathrm{MgCl}_{2}=\Delta H$ latt diss $+\Delta H$ hyd $\mathrm{Mg}^{2+}+2 \Delta \mathrm{H}_{\text {hyd Cl }}{ }^{-}$ OR 2493-1920 + (2x-364)

M1 for expression with or without numbers
$\mathrm{M} 2=-155\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
M2 for answer
If factor of 2 missing for ΔH hyd C•, allow 1 mark for 209
(f) $\mathrm{M}_{1} \mathrm{Ca}^{2+}$ (ion) bigger/lower charge to size ratio (than Mg^{2+})

Allow converse answers
M1 Do not accept Ca ${ }^{2+}$ is a bigger atom/molecule
M1 Allow Ca^{2+} has more shells/ more distance of outer e to nucleus Ignore more shielding
[11]
2. (a) M1
$\Delta_{\mathrm{f}} H=\Delta_{\mathrm{a}} H(\mathrm{Sr})+2 \Delta_{\mathrm{a}} H(\mathrm{Cl})+\Delta_{1 \text { st IE }} H(\mathrm{Sr})+\Delta_{2 n d \mathrm{IE}} H(\mathrm{Sr})+2 \Delta_{\mathrm{EA}} H(\mathrm{Cl})+\Delta_{\mathrm{LE}} H(\mathrm{Sr})$
Or
$-828=164+(2 \times 121)+548+1060+\left(2 \times \Delta_{E A} H\right)+(-2112)$

M2 $2 \times \Delta_{\text {EA }} H=-730$

M3 $\Delta_{\text {EA }} H=-365\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow M3 = M2 $\div 2$
(+) 365, -304.5 , and $-730=2$ marks
(+) 304.5, (+) 730 and $-609=1$ mark
(+) $609=0$ marks 1
(b)

All three lines must be shown
(c) (Has) covalent character or partial covalent bonding (as well as ionic bonding)

Allow chloride ion has been polarised or chloride ion distorted Ignore not perfectly ionic
Ignore ions are not spheres
Do not allow references to molecules or ions with covalent character
Do not allow it is covalently bonded alone
(d) M1 (From Li+ to K^{+}) size (of ion) increases OR charge density (of ion) decreases

M1 Allow K+ has more shells or larger distance between nucleus and outer electrons or larger ionic radius
Do not allow atomic radius or molecules

M2 (Electrostatic) attraction between metal ion and $\mathrm{O}^{\delta-}$ of water decreases or attraction between lone pair on O and + ion decreases

M2 Not dependent on M1
Allow converse arguments
(e) M1 $\Delta_{\text {sol }} H=\Delta_{\text {LEdissociation }} H+\Delta_{\text {hyd }} H\left(\mathrm{Ca}^{2+}\right)+2 x \Delta_{\text {hyd }} H\left(\mathrm{Br}^{-}\right)$
or
M1 $\quad-110=2176+(-1650)+2 x \Delta_{\text {hyd }} H\left(\mathrm{Br}^{-}\right)$

M2 $\left(2 x \Delta_{\text {hyd }} H\left(\operatorname{Br}^{-}\right)\right)=-636$

M3 $\quad \Delta_{\text {hyd }} H\left(\mathrm{Br}^{-}\right)=-318\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow M3 = M2 $\div 2$
(+)1858, (+)318 and -636 = 2 marks
+3716, -1858 and (+)636 = 1 mark
$-3716=0$ marks
3. (a) Top line $\mathrm{Cs}^{+}(\mathrm{g})+\mathrm{e}^{-}+\mathrm{I}(\mathrm{g})$

Lower line $\quad \mathrm{Cs}(\mathrm{s})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~s})$
(b) $79+x+376-314=-337+585$

So enthalpy change $=107\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow I mark for -107 ($\mathrm{kJ} \mathrm{mol}^{-1}$)
Allow answer to 2sf or more
(c) (Almost/Mostly) purely/ perfectly ionic

If ionic not mentioned, allow no/little covalent bonding/character Penalise references to atoms/molecules Ignore electronegativity
(d) $\quad \mathrm{M} 1 \Delta \mathrm{~S}=\left[\left(82.8+\frac{1}{2} \times 117\right)-130\right]=\underline{11.3}\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

M1 Correct entropy change value

1
M2 $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
M2 equation or equation with numbers
1
M3 $\Delta \mathrm{G}=337-298 \times 11.3 \times 10^{-3} \quad$ OR $\quad 337000-298 \times 11.3$
M3 for converting units:
ΔS into $\mathrm{KJK}^{-1} \mathrm{~mol}^{-1}$ or $\Delta \mathrm{H}^{2}$ into $\mathrm{J} \mathrm{mol}^{-1}$

M4 $\Delta \mathrm{G}=(+) 334 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $334000 \mathrm{~J} \mathrm{~mol}^{-1}$
M4 answer with correct units
Any negative answer loses M4
4.

One mark for each level with correct state symbols
(b) $\quad \Delta_{\mathrm{f}} H=\Delta_{\mathrm{a}} H(\mathrm{Mg})+1 / 2 \Delta_{\mathrm{BD}} H\left(\mathrm{O}_{2}\right)+\Delta_{1 \text { st IE }} H(\mathrm{Mg})+\Delta_{2 \text { nd IE }} H(\mathrm{Mg})+$
$\Delta_{1 \text { st EA }} H(\mathrm{O})+\Delta_{2 \text { nd EA }} H(\mathrm{O})+\Delta_{\mathrm{LE}} H(\mathrm{MgO})$
$-602=150+(1 / 2 \times 496)+736+1450-142+844+\Delta_{\mathrm{LE}} H(\mathrm{MgO})$
$\Delta_{\mathrm{LE}} H(\mathrm{MgO})=-3888 /-3890\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow answers to 2sf or more
1 mark for +3888 or +3890
1 mark for -4136 or -4140 (not $496 \times 1 / 2$)
5.
(a) (i)

Mark each line independently, but follow one route only
Must have state symbols, but ignore s.s. on electrons
Penalise lack of state symbols each time
Alternative answers
$2 K(g)+O(g) M 3$
$2 \mathrm{~K}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \mathrm{M} 2$
$2 K(s)+1 / 2 \mathrm{O}_{2}(g)$ only M 1
or
$2 K(g)+O(g) M 3$
$2 K(s)+O(g) M 2$
$2 K(s)+1 / 2 O_{2}(g)$ only M 1
(ii) $(2 \times 90)+248+(2 \times 418)-142+844=-362+$ Lattice enthalpy of dissociation

Enthalpy of lattice dissociation $=(+) 2328\left(\mathrm{kJmol}^{-1}\right)$
M1 for (2×90) and (2×418)
M2 for a correct expression (either in numbers or with words/formulae)
M3 for answer
$2328 \mathrm{kJmol}^{-1}$ scores 3 marks
Allow answers given to 3sf
Answer of 1820, scores zero marks as two errors in calculation.
Answers of 2238, 1910, 2204 max = 1 mark only since one
chemical error in calculation (incorrect/missing factor of 2)
Allow 1 mark for answer of -2328 (kJmol^{-1})
Penalise incorrect units by one mark
(b) K^{+}(ion)/K ion is bigger (than Na^{+}ion)
K^{+}has lower charge density / Na+ has higher charge density Ignore K atom is bigger
(Electrostatic) attraction between (oppositely charged) ions is weaker If attraction is between incorrect ions, then lose M2
Attraction between molecules/atoms or mention of intermolecular forces $C E=0 / 2$
Allow converse for $\mathrm{Na}_{2} \mathrm{O}$ if explicit
6. (a) $\mathrm{Cl}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g})$

State symbols essential
Allow e with no charge
This and all subsequent equations must be balanced
(b) There is an attraction between the nucleus / protons and (the added) electron(s)

Energy is released (when the electron is gained)
Allow product more stable / product has lower energy
Allow reaction exothermic / heat released
Allow reference to chlorine rather than fluorine
Wrong process eg ionisation, boiling $C E=0$
1
(c) (i) Top line: $+\mathrm{e}^{-}+\mathrm{F}(\mathrm{g})$

Penalise missing / wrong state symbols one mark only Penalise FI or Cl one mark only

Second line from top : $+\mathrm{e}^{-}+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})$
Mark independently
Allow e with no charge

Bottom two lines: $+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})$
Penalise each lack of an electron in M1 and M2 each time
(ii) $\frac{1}{2} E(F-F)+732+289++203=348+955$

$$
\frac{1}{2} E(F-F)=79
$$

$$
E(F-F)=158\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

Award one mark (M2) if M1 wrong but answer $=M 1 \times 2$
Ignore no units, penalise wrong units but allow $\mathrm{kJ} \mathrm{mol}^{-}$
Any negative answer, $C E=0$
(d) (i) Experimental lattice enthalpy value allows for / includes covalent interaction / non-spherical ions / distorted ions / polarisation

OR AgF has covalent character
Allow discussion of AgCl instead of AgF
$C E=0$ for mention of molecules, atoms, macromolecular, mean bond enthalpy, intermolecular forces (imf), electronegativity

1
Theoretical lattice enthalpy value assumes only ionic interaction / point charges / no covalent / perfect spheres / perfectly ionic

OR AgF is not perfectly ionic
(ii) Chloride ion larger (than fluoride ion) / fluoride ion smaller (than chloride ion)

Penalise chlorine ion once only
Allow Cl^{-}and F^{-}instead of names of ions
Allow chloride ion has smaller charge density / smaller charge to size ratio but penalise mass to charge ratio

Attraction between Ag^{+}and Cl^{-}weaker / attraction between Ag^{+}and F^{-} stronger

For M2 Cl and F- can be implied from an answer to M1
Mark M1 and M2 independently provided no contradiction
$C E=0$ for mention of chlorine not chloride ion, molecules, atoms, macromolecular, mean bond enthalpy, intermolecular forces (imf), electronegativity

