

A-Level Chemistry

Buffers

Mark Scheme

Time available: 68 minutes Marks available: 65 marks

www.accesstuition.com

Mark schemes

1.

(a) $[H^+] = (10^{-3.87} =) 1.3489 \times 10^{-4}$

Allow 1.35×10^{-4} . If M1 wrong can only score M2.

$$[CH_{3}COOH] = \frac{[H^{+}] \left[CH_{3}COO^{-} \right]}{[Ka]} = \left(\frac{\left[1.3489 \times 10^{-4} \right] [0.136]}{\left[1.74 \times 10^{-5} \right]} = 1.05436 \right)$$

Mark is for correctly rearranged equation.

 $1.05 - 1.06 \pmod{\text{mol dm}^{-3}}$ 3 sf or more

(b) If 0.007 moles in 500 cm³ seen follow Mark Scheme 1

Mark Scheme 1

moles ethanoic acid = 0.130
 1

 moles sodium ethanoate = 0.0605
 1

 mol
$$CH_3COOH$$
 after addition = (0.130 - 0.007) = 0.123
 1

 mol CH_3COO^- after addition = (0.0605+0.007) = 0.0675
 1

$$[H^+] = \left(\frac{[Ka][CH_3COOH]}{[CH_3COO^-]}\right) = \frac{\left[1.74 \times 10^{-5}\right][0.123]}{[0.0675]} (=3.171 \times 10^{-5})$$

pH = 4.50 (must be 2dp)

Method 1 For M3 allow M1 – 0.007 For M4 allow M2 + 0.007 1

1

1

1

Mark Scheme 2

moles CH_3COOH after addition = (0.260 - 0.014) = 0.246 (This scores 2 marks) moles CH_3COO^- after addition = (0.121 + 0.014) = 0.135 (This scores 2 marks)

$$[H^+] = \left(\frac{[Ka][CH_3COOH]}{[CH_3COO^-]}\right) = \frac{\left[1.74 \times 10^{-5}\right][0.246]}{[0.135]}$$

pH = 4.50 (must be 2dp)

Method 1 and 2 M5 = expression with their numbers M6 = answer to 2 dp

pH = 4.50 scores 6 marks

If $\sqrt{}$ used in K_a expression, stop at M4 If divide by 2 after M5, lose M6

Allow solutions which use Henderson-Hasselbach Equation

(a) $[H^+] = \frac{K_a \times [CH_a COOH]}{CH_a COO^-}$ or $= 1.74 \times 10^{-5} \times \frac{0.186}{0.105}$

= 3.08 × 10⁻⁵

2.

If
$$[HX] / [X^-]$$
 or $\frac{0.186}{0.105}$ upside down, or any addition or subtraction lose M1 & M2.

M2

M1

pH = 4.51 (correct answer scores 3) Can score M3 for correct pH conseq to their [H⁺], so pH = 5.01 scores one Must be to 2 dp

M3

1

1

1

[9]

 $pH = pKa - log[HX] / X^{-}] = -log(1.74 \times 10^{-5}) - log(\frac{0.186}{0.105})$ Allow ()M1 pKa = 4.76 - 0.248 $If [HX] / [X^{-}] or \frac{0.186}{0.105} upside down, can only score 1$ M2 pH = = 4.51 so pH = 5.01 Must be to 2 dpM3

(b) mol HX after addition (= 0.251 + 0.015) = 0.266
 For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3

M1

mol X⁻ after subtraction (= 0.140 - 0.015) = 0.125

For X^- if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3

M2

1

1

1

$$[H^+] = \left(\begin{array}{c} \frac{K_a \times [CH_a COOH]}{CH_a COO^-} \right) = \frac{1.74 \times 10^{-5} \times 0.266}{0.125}$$

If errors above in both addition AND subtraction can only score M3 for insertion of their numbers in rearranged expression. One exception, if addition and subtraction reversed then pH = 4.58 scores 2

M3

 $[H^+] = 3.703 \times 10^{-5} \text{ (mol dm}^{-3})$

If $[HX] / [X^-]$ upside down, lose M3 & M4 (or next two marks) but can score M5 for correct pH conseq to their $[H^+]$, so if M1 & M2 correct, pH = 5.09 scores 3.

M4

pH = 4.43

Correct use of HX and X⁻ values from (d) gives pH= 4.41 and scores 4 If wrong method, e.g. √ or no use of rearranged K_a expression, may score M1 & M2 but no more. Allow more but not fewer than 2dp here.

M5

Alternative using Henderson-Hasselbach Equation

mol acid after addition = 0.251 + 0.015 = 0.266

For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3

mol salt after addition = 0.140 - 0.015 = 0.125

For X^- if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3

M2

M1

 $pH = (pKa - log[HX] / [X^{-}]) = -log(1.74 \times 10^{-5}) - log(0.266 / 0.125)$ If errors above in both addition AND subtraction can only score M3 for insertion of their numbers – except if addition and subtraction reversed then pH = 4.58 scores 2

M3

M4

pH = = 4.43

pH = 4.76 - 0.328

If $[HX] / [X^-]$ upside down, lose M3 & M4 (or next two marks) but can score M5 for correct pH conseq to their working, so if M1 & M2 correct, pH = 5.09 scores 3. Allow more but not fewer than 2dp here.

M5

 (a) (only) slightly or partially dissociated / ionised *Ignore 'not fully dissociated'. Allow low tendency to dissociate or to lose / donate a proton. Allow shown equilibrium well to the left. Otherwise ignore equations.* [8]

(b)	$2CH_{3}CH_{2}COOH + Na_{2}CO_{3} \longrightarrow 2CH_{3}CH_{2}COONa + H_{2}O + CO_{2}$	
	OR	
	$2CH_{3}CH_{2}COOH + CO_{3}^{2-} \longrightarrow 2CH_{3}CH_{2}COO^{-} + H_{2}O + CO_{2}$	
	OR	
	$CH_3CH_2COOH + Na_2CO_3 \longrightarrow CH_3CH_2COONa + NaHCO_3$	
	OR	
	$\begin{array}{l} CH_3CH_2COOH + CO_3^{2-} \longrightarrow CH_3CH_2COO^- + HCO_3^-\\ Must \ be \ propanoic \ acid, \ allow \ C_2H_5COOH.\\ Not \ molecular \ formulae.\\ Allow \ multiples.\\ Ignore \ reversible \ sign.\\ Not \ H_2CO_3. \end{array}$	1
(c)	$[OH^-] = 2 \times 0.0120 = 0.0240$ M1 Correct answer for pH with or without working scores 3.	1
	$[H^+] = \frac{1 \times 10^{-14}}{0.0240} = 4.166 \times 10^{-13} \text{ OR } \text{pOH} = 1.62 \text{ M2}$ $If \times 2 \text{ missed or used wrongly can only score M3 for correct}$ $calculation of pH \text{ from their } [H^+].$	1
	pH = 12. <u>38</u> M3 Lose M3 if not 2 decimal places: 12.4 scores 2. 12.08 scores 1 (missing × 2) ; 12.1 scores 0. 11.78 scores 1 (dividing by 2) 11.8 scores 0.	1
(d)	[C ₆ H ₅ COOH] Ignore () here but brackets must be present. Must be correct acid and salt. If wrong, mark part (ii) independently.	1

(ii) M1
$$K^{a} = \frac{[H^{+}]^{2}}{[C_{6}H_{5}COOH]}$$
 OR with numbers
Correct answer for pH with or without working scores 3.
Allow HX, HA and ignore () here.
May score M1 in part (i).

M2 $[H^+] = \sqrt{(6.31 \times 10^{-5} \times 0.0120)} \text{ or } \sqrt{(K_a \times [C_6H_5COOH])}$ $(= \sqrt{(7.572 \times 10^{-7} = 8.70 \times 10^{\times 4})}$ pH = 6.12 may score 2 if correct working shown and they show the square root but fail to take it.

But if no working shown or wrong $K^a = \frac{[H^+]}{[C_6H_5COOH]}$

used which also leads to 6.12, then zero scored.

M3
$$pH = 3.06$$

Must be 2 decimal places ie 3.1 loses M3.

(iii) M1 $[H^+] = 10^{-4.00} = 1.00 \times 10^{-4}$ Correct answer for mass with or without working scores 5. Allow 1×10^{-4} .

M2
$$[X^{-}] = \frac{Ka \times [HX]}{[H^{+}]}$$

Ignore () here. If $[HX] / [X^-]$ upside down, can score M1 plus M4 for 5.26 × 10⁻⁷.

M3 =
$$\frac{6.31 \times 10^{-5} \times 0.0120}{1.00 \times 10^{-4}}$$

And M5 for 7.57 × 10⁻⁵ g.
M4 = 7.572 × 10⁻³

1

1

1

1

1

		M5 Mass (C ₆ H ₅ COONa) = $7.572 \times 10^{-3} \times 144 = 1.09$ g or 1.1 g	
		Wrong method, eg using [H+] ² may only score M1 and M5 for correct multiplication of their M4 by 144	
		(provided not of obviously wrong substance).	
			1
(e)	M1	CO ₂	
(-)		Allow NO_x and SO_2 .	
			1
	M2	pH (It) falls / decreases	
	1012	If M1 wrong, no further marks.	
		in with wrong, no further marks.	1
	М3	mark M2 & M3 independently	
		acidic (gas)	
		OR reacts with alkali(ne solution) / OH ⁻	
		OR $CO_2 + 2OH^- \longrightarrow CO_3^{2-} + H_2O$	
		OR $CO_2 + OH^- \longrightarrow HCO_3^-$	
		Not forms $H_2CO_3 H_2SO_3 H_2SO_4$ etc OR H ⁺ ions.	
			1
			[17]
(a)	(i)	[H ⁺][OH ⁻] OR [H ₃ O ⁺][OH ⁻]	
	.,	Ignore (aq)	
		Must have [] not ()	
			1
	(ii)	$\sqrt{3.46 \times 10^{-14}} (= 1.86 \times 10^{-7})$	
	(11)	If no square root, $CE=0$	
			1
		pH = 6.73	
		Must be 2dp	1
	(iii)	$[H^+] = 10^{-11.36} (= 4.365 \times 10^{-12} \text{ OR } 4.37 \times 10^{-12})$	
		Mark for working	
			1
		$Kw = [4.365 \times 10^{-12} \text{ OR } 4.37 \times 10^{-12} \times 0.047] = 2.05 \times 10^{-13}$	
		Allow 2.05 × 10^{-13} – 2.1 × 10^{-13}	
		Mark for answer	
		Ignore units	
		-	1

4.

(b) (i) HCOOH \longrightarrow HCOO⁻ + H⁺ Must have \implies but ignore brackets.

> **OR** HCOOH + H₂O \longrightarrow HCOO⁻ + H₃O⁺ Allow HCO₂⁻ or CHOO⁻ ie minus must be on oxygen, so penalise COOH⁻

(ii)
$$K_{\alpha} = \frac{\left[H^{+}\right]\left[HCOO^{-}\right]}{HCOOH} OR \frac{\left[H_{3}O^{+}\right]\left[HCOO^{-}\right]}{HCOOH}$$

Must have all brackets but allow () Must be HCOOH etc. Allow ecf in formulae from (b)(i)

(iii) M1

$$K_{a} = \frac{\left[H^{+}\right]^{2}}{\left[HCOOH\right]} \left(\left[H^{+}\right]^{2} = 1.78 \times 10^{-4} \times 0.056 = 9.97 \times 10^{-8}\right)$$

Allow HA or HX etc. Allow $[H^+] = \sqrt{(Ka \times [HA])}$ for M1

- M2 $[H^+] = 3.16 \times 10^{-3}$ Mark for answer
- M3 pH = 2.50 allow more than 2 dp but not fewer

Allow correct pH from their wrong [H^+] here only If square root shown but not taken, pH = 5.00 can score max 2 for M1 and M3

1

1

1

1

(c) (i) M1
$$[H^+] = \frac{Ka \times [HX]}{[X^-]}$$
 OR $pH = pK_a - \log \frac{[HX]}{[X^-]}$

M2
$$\frac{1.78 \times 10^{-4} \times 2.35 \times 10^{-2}}{1.84 \times 10^{-2}}$$
 OR pH = 3.75 - log $\frac{2.35 \times 10^{-2}}{1.84 \times 10^{-2}}$
(= 2.27 × 10⁻⁴)

(ii) M1 Mol H⁺ added =
$$5.00 \times 10^{-4}$$

Mark on from AE in moles of HCl (eg 5×10^{-3} gives pH = 3.42 scores 3)

M2 Mol HCOOH = 2.40×10^{-2} and Mol HCOO⁻ = 1.79×10^{-2} If either wrong no further marks except AE (-1) OR if ECF in mol acid and / or mol salt from (c)(i), can score all 4

M3
$$[H^+] \left(= \frac{\text{Kax}[XH]}{[X^-]}\right) = \frac{1.78 \times 10^{-4} \text{ x} 2.40 \times 10^{-2}}{1.79 \times 10^{-2}} \left(= 2.39 \times 10^{-4}\right)$$

If $[HX]/[X^-]$ upside down here after correct expression in (c)(i), no further marks

OR pH = 3.75 -
$$\log \frac{2.40 \times 10^{-2}}{1.79 \times 10^{-2}}$$

If $[HX]/[X^-]$ upside down here and is repeat error from (c)(i), max 3 (pH = 3.88 after 3.86 in (c)(i))

1

1

1

1

1

1

1

M4 pH = 3.62 allow more than 2 dp but not fewer pH calc NOT allowed from their wrong [H⁺] here

(a)	(i)	addition of small amounts of acid send eqm to left or extra H ⁺ removed by reaction with HCO_3^-	1
		ratio $[H_2CO_3]/[HCO_3^-]$ remains constant hence $[H^+]$ and pH remain const	1
	(ii)	$pH = 7.41$: $[H^+] = 3.89 \times 10^{-8} \text{ mol dm}^{-3}$	1
		$=\frac{(3.89\times10^{-8})(2.5\times10^{-2})}{1.25\times10^{-2}}=7.78\times10^{-8}\text{mol dm}^{-3}$	1
		allow error carried forward mark. Do not penalise twice.	1
(b)	(i)	moles H ⁺ added = $10 \times 10^{-3} \times 1.0 = 0.01$	1
	(ii)	moles ethanoic acid after addition = $0.15 + 0.01 = 0.16$	1
		moles ethanoate ions after addition = $0.10 - 0.01 = 0.09$	1
	(iii)	$[H^+] = \frac{K_a[CH_3COOH]}{[CH_3COO^-]}$	1
		$= 1.74 \times 10^{-5} \times \frac{0.16 / \vee}{0.09 / \vee}$	
			1
		pH = 4.51	1

5.

[11]