

A-Level Chemistry

Buffers

Mark Scheme

Time available: 68 minutes Marks available: 65 marks

Mark schemes

1. (a) $\left[\mathrm{H}^{+}\right]=\left(10^{-3.87}=\right) 1.3489 \times 10^{-4}$

Allow 1.35×10^{-4}. If M1 wrong can only score M2.
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{[\mathrm{Ka}]}=\left(\frac{\left[1.3489 \times 10^{-4}\right][0.136]}{\left[1.74 \times 10^{-5}\right]}=1.05436\right)$

Mark is for correctly rearranged equation.
(b) If $\mathbf{0 . 0 0 7}$ moles in $500 \mathbf{~ c m}^{3}$ seen follow Mark Scheme $\mathbf{1}$

Mark Scheme 1

moles ethanoic acid $=0.130$
moles sodium ethanoate $=0.0605$
mol CH ${ }_{3} \mathrm{COOH}$ after addition $=(0.130-0.007)=0.123$
$\mathrm{mol} \mathrm{CH}_{3} \mathrm{COO}^{-}$after addition $=(0.0605+0.007)=0.0675$
$\left[\mathrm{H}^{+}\right]=\left(\frac{[\mathrm{Ka}]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}\right)=\frac{\left[1.74 \times 10^{-5}\right][0.123]}{[0.0675]}\left(=3.171 \times 10^{-5}\right)$
$\mathrm{pH}=\underline{4.50}$ (must be 2 dp)

Method 1
For M3 allow M1 - 0.007
For M4 allow M2 +0.007

If $\mathbf{0 . 0 1 4}$ moles in $\mathbf{1} \mathrm{dm}^{3}$ follow Mark Scheme $\mathbf{2}$

Mark Scheme 2

moles $\mathrm{CH}_{3} \mathrm{COOH}$ after addition $=(0.260-0.014)=0.246$ (This scores 2 marks)
moles $\mathrm{CH}_{3} \mathrm{COO}^{-}$after addition $=(0.121+0.014)=0.135$ (This scores 2 marks)
$\left[\mathrm{H}^{+}\right]=\left(\frac{[\mathrm{Ka}]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}\right)=\frac{\left[1.74 \times 10^{-5}\right][0.246]}{[0.135]}$
$\mathrm{pH}=\underline{4.50}$ (must be 2dp)
Method 1 and 2
M5 = expression with their numbers
M6 = answer to $2 d p$
pH $=4.50$ scores 6 marks

If $\sqrt{ }$ used in K_{a} expression, stop at $M 4$
If divide by 2 after M5, lose M6

Allow solutions which use Henderson-Hasselbach Equation
2.
(a) $\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\mathrm{CH}_{3} \mathrm{COO}^{-}}$or $=1.74 \times 10^{-5} \times \frac{0.186}{0.105}$

Allow ()
$\mathrm{pH}=4.51 \quad$ (correct answer scores 3)
Can score M3 for correct pH conseq to their $\left[\mathrm{H}^{+}\right]$, so $\mathrm{pH}=5.01$ scores one
Must be to 2 dp

Alternative using Henderson-Hasselbach Equation

$$
\begin{gathered}
\left.\mathrm{pH}=\mathrm{pKa}-\log [\mathrm{HX}] / \mathrm{X}^{-}\right]=-\log \left(1.74 \times 10^{-5}\right)-\log \left(\frac{0.186}{0.105}\right) \\
\text { Allow }()
\end{gathered}
$$

M1
$\mathrm{pKa}=4.76-0.248$
If $[H X] /\left[X^{-}\right]$or $\frac{0.186}{0.105}$ upside down, can only score 1
M2
$\mathrm{pH}==4.51$
so $\mathrm{pH}=5.01$
Must be to 2 dp
M3
(b) mol HX after addition $(=0.251+0.015)=0.266$

For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3

M1
mol X^{-}after subtraction $(=0.140-0.015)=0.125$
For X - if no subbraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3

M2
$\left[\mathrm{H}^{+}\right]=3.703 \times 10^{-} 5\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
If [HX] / [X^{-}] upside down, lose M3 \& M4 (or next two marks) but can score M5 for correct pH conseq to their [H+], so if M1 \& M2 correct, pH = 5.09 scores 3 .
$\mathrm{pH}=4.43$
Correct use of HX and X^{-}values from (d) gives
$\mathrm{pH}=4.41$ and scores 4
If wrong method, e.g. $\sqrt{ }$ or no use of rearranged K_{a} expression, may score M1 \& M2 but no more.
Allow more but not fewer than 2dp here.
mol acid after addition $=0.251+0.015=0.266$
For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3

M1
mol salt after addition $=0.140-0.015=0.125$
For X^{-}if no subtraction or error in subtraction (other than $A E$) (or subsequent extra add or sub) MAX 3

M2
$\mathrm{pH}=\left(\mathrm{pKa}-\log [\mathrm{HX}] /\left[\mathrm{X}^{-}\right]\right)=-\log \left(1.74 \times 10^{-5}\right)-\log (0.266 / 0.125)$
If errors above in both addition AND subtraction can only score M3 for insertion of their numbers - except if addition and subtraction reversed then $\mathrm{pH}=4.58$ scores 2

M3
$\mathrm{pH}=4.76-0.328$
$\mathrm{pH}==4.43$
If [HX] / [X^{-}] upside down, lose M3 \& M4 (or next two marks) but can score M5 for correct pH conseq to their working, so if M1 \& M2 correct, $\mathrm{pH}=5.09$ scores 3 .
Allow more but not fewer than 2dp here.
M5
[8]
3. (a) (only) slightly or partially dissociated / ionised

Ignore 'not fully dissociated'.
Allow low tendency to dissociate or to lose / donate a proton.
Allow shown equilibrium well to the left.
Otherwise ignore equations.
(b) $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

OR

$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
OR
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{NaHCO}_{3}$

OR

Must be propanoic acid, allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$.
Not molecular formulae.
Allow multiples.
Ignore reversible sign.
Not $\mathrm{H}_{2} \mathrm{CO}_{3}$.
(c) $\left[\mathrm{OH}^{-}\right]=2 \times 0.0120=0.0240$ M1
Correct answer for pH with or without working scores 3 .

1
$\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{0.0240}=4.166 \times 10^{-13} \quad O R \mathrm{pOH}=1.62 \quad \mathrm{M} 2$
If $\times 2$ missed or used wrongly can only score M3 for correct calculation of pH from their $\left[\mathrm{H}^{+}\right]$.

```
pH=12.38 M3
\(\mathrm{pH}=12 . \underline{38} \quad \mathrm{M} 3\)
```

Lose M3 if not 2 decimal places: 12.4 scores 2.
12.08 scores 1 (missing $\times 2$); 12.1 scores 0 .
11.78 scores 1 (dividing by 2) 11.8 scores 0 .
(d) (i) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$

Ignore () here but brackets must be present.
Must be correct acid and salt.
If wrong, mark part (ii) independently.
(ii) M1 $\quad K^{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]} \quad$ OR with numbers

Correct answer for pH with or without working scores 3.
Allow HX, HA and ignore () here.
May score M1 in part (i).

M2 $\quad\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(6.31 \times 10^{-5} \times 0.0120\right)$ or $\sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]\right)$ $\left(=\sqrt{ }\left(7.572 \times 10^{-7}=8.70 \times 10^{\times 4}\right)\right.$
$\mathrm{pH}=6.12$ may score 2 if correct working shown and they show the square root but fail to take it.

But if no working shown or wrong $K^{a}=\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$
used which also leads to 6.12, then zero scored.

M3 $\quad \mathrm{pH}=3 . \underline{06}$
Must be 2 decimal places ie 3.1 loses M3.
(iii) M1 $\quad\left[\mathrm{H}^{+}\right]=10^{-4.00}=1.00 \times 10^{-4}$

Correct answer for mass with or without working scores 5 .
Allow 1×10^{-4}.

M2 $\quad\left[\mathrm{X}^{-}\right]=\frac{\mathrm{Ka} \mathrm{x}[\mathrm{HX}]}{\left[\mathrm{H}^{+}\right]}$
Ignore () here.
If [HX] / [X] upside down, can score M1 plus
M4 for 5.26×10^{-7}.

M3 $=\frac{6.31 \times 10^{-5} \times 0.0120}{1.00 \times 10^{-4}}$
And M5 for $7.57 \times 10^{-5} \mathrm{~g}$.

M4 $=7.572 \times 10^{-3}$

Wrong method, eg using $\left[\mathrm{H}^{+}\right]^{2}$ may only score M1 and M5 for correct multiplication of their M4 by 144
(provided not of obviously wrong substance).
(e) M1 CO_{2}

Allow NO_{x} and SO_{2}.
1
M2 pH (It) falls / decreases If M1 wrong, no further marks.

M3 mark M2 \& M3 independently acidic (gas)

OR reacts with alkali(ne solution) / OH^{-}
$\mathrm{OR} \mathrm{CO} 2+2 \mathrm{OH}^{-} \longrightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$
OR CO $2+\mathrm{OH}^{-} \longrightarrow \mathrm{HCO}_{3}^{-}$
Not forms $\mathrm{H}_{2} \mathrm{CO}_{3} \mathrm{H}_{2} \mathrm{SO}_{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ etc OR H^{+}ions.
4. (a) (i) $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] O \boldsymbol{R}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Ignore (aq)
Must have [] not ()
(ii) $\sqrt{ } 3.46 \times 10^{-14}\left(=1.86 \times 10^{-7}\right)$

If no square root, $C E=0$

$$
\mathrm{pH}=6.73
$$

Must be 2dp
(iii) $\left[\mathrm{H}^{+}\right]=10^{-11.36}\left(=4.365 \times 10^{-12}\right.$ OR $\left.4.37 \times 10^{-12}\right)$

Mark for working

$$
K w=\left[4.365 \times 10^{-12} \text { OR } 4.37 \times 10^{-12} \times 0.047\right]=2.05 \times 10^{-13}
$$

Allow $2.05 \times 10^{-13}-2.1 \times 10^{-13}$
Mark for answer
Ignore units
(b) (i) $\mathrm{HCOOH} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}^{+}$

Must have \rightleftharpoons but ignore brackets.
OR $\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Allow HCO_{2}^{-}or CHOO^{-}ie minus must be on oxygen, so penalise COOH^{-}
(ii) $K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{\mathrm{HCOOH}}$ OR $\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{\mathrm{HCOOH}}$

Must have all brackets but allow ()
Must be HCOOH etc.
Allow ecf in formulae from (b)(i)
(iii) M1
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}\left(\left[\mathrm{H}^{+}\right]^{2}=1.78 \times 10^{-4} \times 0.056=9.97 \times 10^{-6}\right)$
Allow HA or HX etc.
Allow $\left[H^{+}\right]=\sqrt{ }(K a \times[H A])$ for M1

M2 $\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-3}$
Mark for answer

M3 $\mathrm{pH}=2.50$ allow more than 2 dp but not fewer
Allow correct pH from their wrong $\left[\mathrm{H}^{+}\right]$here only If square root shown but not taken, pH = 5.00 can score max 2 for M1 and M3
(iv) M1 Decrease Mark M1 independently

M2 Eqm shifts / moves to RHS OR more H^{+}OR K_{a} increases OR more dissociation

M3 To reduce temperature or oppose increase / change in temperature

Only award M3 following correct M2

(c) (i) $\mathrm{M} 1 \quad\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Ka} \times[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]} \quad$ OR $\quad \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-\log \frac{[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}$

If $[H X][$ [X] upside down, no marks

M3 $\mathrm{pH}=3.64$ allow more than 2 dp but not fewer pH calc NOT allowed from their wrong [H^{+}] here
(ii) $\mathrm{M} 1 \quad \mathrm{Mol} \mathrm{H}+$ added $=5.00 \times 10^{-4}$

Mark on from AE in moles of HCl (eg 5×10^{-3} gives $\mathrm{pH}=3.42$ scores 3)

M2 $\mathrm{Mol} \mathrm{HCOOH}=2.40 \times 10^{-2}$ and $\mathrm{Mol} \mathrm{HCOO}=1.79 \times 10^{-2}$ If either wrong no further marks except $A E(-1)$ OR if ECF in mol acid and / or mol salt from (c)(i), can score all 4

M3 $\left[\mathrm{H}^{+}\right]\left(=\frac{\mathrm{Kax}[\mathrm{XH}]}{\left[\mathrm{X}^{-}\right]}\right)=\frac{1.78 \times 10^{-4} \times 2.40 \times 10^{-2}}{1.79 \times 10^{-2}}\left(=2.39 \times 10^{-4}\right)$

If [HX]/[X-] upside down here after correct expression in (c)(i), no further marks

$$
O R \mathrm{pH}=3.75-\log \frac{2.40 \times 10^{-2}}{1.79 \times 10^{-2}}
$$

If $[H X] /\left[X^{-}\right]$upside down here and is repeat error from (c)(i), max 3 ($\mathrm{pH}=3.88$ after 3.86 in (c)(i))

M4 $\mathrm{pH}=3.62$ allow more than 2 dp but not fewer pH calc NOT allowed from their wrong [H^{+}] here
5. (a) (i) addition of small amounts of acid send eqm to left or extra H^{+} removed by reaction with HCO_{3}^{-}

1
ratio $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] /\left[\mathrm{HCO}_{3}^{-}\right]$remains constant hence $\left[\mathrm{H}^{+}\right]$and pH remain const

1
(ii) $\mathrm{pH}=7.41 \therefore\left[\mathrm{H}^{+}\right]=3.89 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
$=\frac{\left(3.89 \times 10^{-8}\right)\left(2.5 \times 10^{-2}\right)}{1.25 \times 10^{-2}}=7.78 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$
allow error carried forward mark. Do not penalise twice.
(b) (i) moles H^{+}added $=10 \times 10^{-3} \times 1.0=0.01$
(ii) moles ethanoic acid after addition $=0.15+0.01=0.16$
moles ethanoate ions after addition $=0.10-0.01=0.09$
(iii) $\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$
$=1.74 \times 10^{-5} \times \frac{0.16 / \mathrm{V}}{0.09 \mathrm{~N}}$
$\mathrm{pH}=4.51$

