

A-Level Chemistry

Calculation of pH

Mark Scheme

Time available: 77 minutes Marks available: 73 marks

Mark schemes

1. (a) $\mathrm{Ans}=\mathrm{C}$

1
(b) $\quad\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{w}=\sqrt{ } 2.93 \times 10^{-15} \quad\left(=5.41 \times 10^{-8}\right)$
$\mathrm{pH}=\left(-\log \left(5.41 \times 10^{-8}\right)=\underline{7.27}\right.$
Must be 2dp
7.27 scores 2 marks
(c) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
allow description in words
equal moles / quantities / numbers / ratio of H^{+}and OH^{-}
(d) $\left[\mathrm{OH}^{-}\right]=0.0131 \times 2=0.0262$
$p H=12.95$ scores 3 marks
$p H=12.42$ scores 2 marks $\left(K_{w}=1 \times 10^{-14}\right)$
$p H=12.65$ scores 1 mark (not multiplied by 2$)$
$p H=12.35$ scores 1 mark (divided by 2$)$
$p H=12.12$ scores 0 marks (no $\times 2$ and wrong K_{w})
$\left[\mathrm{H}^{+}\right]=\left(K_{w} /\left[\mathrm{OH}^{-}\right]\right)=2.93 \times 10^{-15} / 0.0262\left(=1.118 \times 10^{-13}\right)$
$\mathrm{pH}=\left(-\log \left(1.118 \times 10^{-13}\right)=12.9514=12.95\right.$
Or
$\left[\mathrm{OH}^{-}\right]=0.0131 \times 2=0.0262$
$\mathrm{pOH}=(-\log 0.0262)=1.5817$
$\mathrm{pH}=\left(-\log K_{w}-\mathrm{pOH}=-\log 2.93 \times 10^{-15}-1.58=14.53-1.58\right)=12.95$
allow to 2dp or more
(e) smaller / lower pH / less alkaline / more acidic

If not smaller $C E=0 / 2$
Allow pH number between 8 and 12
(magnesium hydroxide) is less soluble / sparingly soluble/ solubility of hydroxide increases down group II

M2 dependent on M1 but if blank mark on
Ignore concentration and dissociation
Ignore incorrect formula
Do not allow $\mathrm{Mg}(\mathrm{OH})_{2}$ is insoluble
2. (a) Proton donor
(b) Completely ionises to give H^{+}ions in water
(c) $0.058 \mathrm{~mol} \mathrm{dm}^{-3}$
1.24
(d) Amount of $\mathrm{NaOH}=5.25 \times 10^{-3}$

Since 1:1 reaction amount of OH - ions in excess

$$
\begin{aligned}
& =5.25 \times 10^{-3}-1.45 \times 10^{-3} \mathrm{~mol} \\
& =3.80 \times 10^{-3}{\mathrm{moles} \mathrm{OH}^{-}}
\end{aligned}
$$

$\left[\mathrm{OH}^{-}\right]=3.80 \times 10^{-3} \times 1000 / 60=0.0633$

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-} \text {so } \mathrm{H}^{+}=\frac{10^{-14}}{0.0633}=1.58 \times 10^{-13}\right.
$$

$$
\mathrm{pH}=12.80
$$

(e) Amount of OH^{-}added $1.5 / 40=0.0375 \mathrm{~mol}$

Use of 1:1 ratio to calculate amount of A^{-}formed $=0.0375 \mathrm{~mol}$

Amount of weak acid initially $=1 \times 0.15=0.150 \mathrm{~mol}$ so amount of weak acid after addition of $\mathrm{NaOH}=0.150-0.0375=0.1125$

If M3 incorrect can only score max of 3 marks

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}}[\mathrm{HA}] /\left[\mathrm{A}^{-}\right] \text {or }\left[\mathrm{H}^{+}\right]=1.79 \times 10^{-5} \times 0.1125 / 0.0375} \\
& =5.37 \times 10^{-5} \\
& \mathrm{pH}=4.27
\end{aligned}
$$

3. (a) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

OR

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
& \text {Must show } \rightleftharpoons \\
& \text { Allow } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}
\end{aligned}
$$

Ignore state symbols
1
(b) $\left(\mathrm{CH}_{3} \mathrm{COOH}+\underline{\mathrm{HNO}_{3}} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}+\mathrm{NO}_{3}^{-}\right)$

IGNORE \rightleftharpoons
Allow $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{2}^{+}, \mathrm{CH}_{3} \mathrm{C}^{+}(\mathrm{OH})_{2}$
(c) (i) $\quad\left(\right.$ new $\left.\left[\mathrm{HNO}_{3}\right]=\left[\mathrm{H}^{+}\right]=\frac{100}{150} \times 0.0125\right)$

M1 $\quad\left[\mathrm{H}^{+}\right]=8.3(3) \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
OR
$n e w\left[\mathrm{HNO}_{3}\right]=\frac{\mathrm{mol} \mathrm{HNO}_{3}}{\text { total vol }}=\frac{1.25 \times 10^{-3}}{150 \times 10^{-3}}$
1
M2 $\mathrm{pH}=-\log \mathrm{M} 1$ OR 2.08
Must be 2dp
Allow correct pH conseq to their $\left[\mathrm{H}^{+}\right]$concentration
(ii) $\mathrm{M} 1 \quad \mathrm{~mol} \mathrm{NaOH}\left(=50 \times 10^{-3} \times 0.0108\right)=5.40 \times 10^{-4}$

M2 Subtraction of M 1 from moles of $\mathrm{HNO}_{3}\left(1.25 \times 10^{-3}\right.$ or conseq from 1 c (i))
Excess mol H${ }^{+}=7.10 \times 10^{-4}$
M2 allow ecf for subtraction of mol
If no subtraction, no further marks
1

M3 $\quad\left[\mathrm{H}^{+}\right]=\frac{M 2}{150 \times 10^{-3}}$ OR $\frac{7.10 \times 10^{-4}}{150 \times 10^{-3}}=4.73 \times 10^{-3}$
M3 if no use of volume, no further marks ($\mathrm{pH}=3.15$)
If incorrect volume used, can score M4
1
M4 $\quad \mathrm{pH}=-\log$ M3 OR 2.32
M4 Allow 2.33 Must be 2 dp
(d) (i) $\mathrm{M} 1 \quad K \mathrm{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$

Penalise () once here Not [H+][A-] / [HA]
If K_{a} expression wrong - Allow correct pH conseq to their [H^{+}] concentration M4 only

M2 $\quad K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ or with numbers or with HA

M3 $\quad\left[\mathrm{H}^{+}\right]=\left[\sqrt{ }\left(1.74 \times 10^{-5} \times 0.0125\right)\right]=4.66 \times 10^{-4}$
Mark for answer

M4 $\quad \mathrm{pH}=3.33$
Must be 2dp
Allow correct pH conseq to their $\left[\mathrm{H}^{+}\right]$concentration
($\mathrm{pH}=3.83$ can score M1, M2 and M4)
(ii) Sodium ethanoate

Ignore formula
Allow sodium acetate
(iii) $\mathrm{M} 1 \quad\left[\mathrm{H}^{+}\right]=1.45 \times 10^{-5}$

Accept 1.445×10^{-5} or 1.4×10^{-5}

M2 $\frac{[\text { salt }]}{[\text { acid }]}\left(\mathrm{OR} \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\mathrm{Ka}}{\left[\mathrm{H}^{+}\right]}\right)=\frac{1.74 \times 10^{-5}}{1.45 \times 10^{-5}}$
If $M 1$ incorrect $C E=0$
Inclusion of 0.0125 in calculation can only score M1

M3 1.2(0)
Ignore units
1.4×10^{-5} gives 1.24
(e) M1 (Electronegative) chlorine withdraws electrons Allow Cl has negative inductive effect

M2 Stabilises/reduces charge on COO-
OR weakens $\underline{\mathrm{O}-\mathrm{H}}$ bond
OR makes $\underline{\mathrm{O}-\mathrm{H}}$ more polar
Ignore chloroethanoic acid dissociates more readily
Mark independently
1
(f) M1 Strong acids (almost) completely dissociated/ionised

OR not an equilibrium
OR equilibrium lies far to the right
Cannot have K_{a} value for a reaction not in equilibrium scores both marks

M2 $\quad K_{a}$ value for strong acids tends to infinity/is very large OR can't divide by zero in K_{a}
4. (a) (only) slightly or partially dissociated / ionised Ignore 'not fully dissociated'.
Allow low tendency to dissociate or to lose / donate a proton.
Allow shown equilibrium well to the left.
Otherwise ignore equations.
(b) $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

OR

$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
OR
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{NaHCO}_{3}$

OR

Must be propanoic acid, allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$.
Not molecular formulae.
Allow multiples.
Ignore reversible sign.
Not $\mathrm{H}_{2} \mathrm{CO}_{3}$.
(c) $\left[\mathrm{OH}^{-}\right]=2 \times 0.0120=0.0240$ M1
Correct answer for pH with or without working scores 3 .

1
$\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{0.0240}=4.166 \times 10^{-13} \quad O R \mathrm{pOH}=1.62 \quad \mathrm{M} 2$
If $\times 2$ missed or used wrongly can only score M3 for correct calculation of pH from their $\left[\mathrm{H}^{+}\right]$.

```
pH=12.38 M3
\(\mathrm{pH}=12 . \underline{38} \quad \mathrm{M} 3\)
```

Lose M3 if not 2 decimal places: 12.4 scores 2.
12.08 scores 1 (missing $\times 2$); 12.1 scores 0 .
11.78 scores 1 (dividing by 2) 11.8 scores 0 .
(d) (i) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$

Ignore () here but brackets must be present.
Must be correct acid and salt.
If wrong, mark part (ii) independently.
(ii) M1 $\quad K^{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]} \quad$ OR with numbers

Correct answer for pH with or without working scores 3.
Allow HX, HA and ignore () here.
May score M1 in part (i).

M2 $\quad\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(6.31 \times 10^{-5} \times 0.0120\right)$ or $\sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]\right)$ $\left(=\sqrt{ }\left(7.572 \times 10^{-7}=8.70 \times 10^{\times 4}\right)\right.$
$\mathrm{pH}=6.12$ may score 2 if correct working shown and they show the square root but fail to take it.

But if no working shown or wrong $K^{a}=\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$
used which also leads to 6.12, then zero scored.

M3 $\quad \mathrm{pH}=3 . \underline{06}$
Must be 2 decimal places ie 3.1 loses M3.
(iii) M1 $\quad\left[\mathrm{H}^{+}\right]=10^{-4.00}=1.00 \times 10^{-4}$

Correct answer for mass with or without working scores 5 .
Allow 1×10^{-4}.

M2 $\quad\left[\mathrm{X}^{-}\right]=\frac{\mathrm{Ka} \mathrm{x}[\mathrm{HX}]}{\left[\mathrm{H}^{+}\right]}$
Ignore () here.
If [HX] / [X] upside down, can score M1 plus
M4 for 5.26×10^{-7}.

M3 $=\frac{6.31 \times 10^{-5} \times 0.0120}{1.00 \times 10^{-4}}$
And M5 for $7.57 \times 10^{-5} \mathrm{~g}$.

M4 $=7.572 \times 10^{-3}$

Wrong method, eg using $\left[\mathrm{H}^{+}\right]^{2}$ may only score M1 and M5 for correct multiplication of their M4 by 144
(provided not of obviously wrong substance).
(e) $\mathrm{M} 1 \quad \mathrm{CO}_{2}$

Allow NO_{x} and SO_{2}.

M2 pH (It) falls / decreases If M1 wrong, no further marks.
mark M2 \& M3 independently
acidic (gas)
OR reacts with alkali(ne solution) / OH^{-}
$\mathrm{OR} \mathrm{CO} 2+2 \mathrm{OH}^{-} \longrightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{OR} \mathrm{CO} 2+\mathrm{OH}^{-} \longrightarrow \mathrm{HCO}_{3}^{-}$
Not forms $\mathrm{H}_{2} \mathrm{CO}_{3} \mathrm{H}_{2} \mathrm{SO}_{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ etc OR H^{+}ions.
5. (a) M1 $\left[\mathrm{H}^{+}\right]=0.0170$

M2 $\mathrm{pH}=1.77$
$2 d p$
Allow M2 for correct pH calculation from their wrong [H^{+}] for this pH calculation only
(b) (i)

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\left[\mathrm{X}^{-}\right]\right.}{[\mathrm{HX}]^{2}} \quad \text { Ignore } K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}
$$

Penalize missing [] here and not elsewhere
Allow HA instead of HX
(ii) M1 $\left[\mathrm{H}^{+}\right]=10^{-2.79}$ OR $1.6218 \ldots \times 10^{3}$ If $\left[\mathrm{H}^{+}\right]$wrong, can only score M2
$\begin{aligned} & \text { M2 } \quad K_{a}= \frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]} \text { OR } \frac{\left[1.62 \times 10^{-3}\right]^{2}}{[0.0850]} \\ & \text { Allow HA instead of } H X\end{aligned}$

1
M3 $\quad \mathrm{K}_{\mathrm{a}}=3.09 \times 10^{-5} \quad 3 \mathrm{sfs} \mathrm{min}$ (allow 3.10×10^{-5} if 1.6218 rounded to 1.622) Ignore units
If [HX] used as ($0.0850-1.62 \times 10^{-3}$)
this gives $K_{a}=3.15 \times 10^{-5}$
$(0.0016)^{2} / 0.085=3.01 \times 10^{-5}$ scores 2 for $A E$
(c) $\mathbf{M 1} \mathrm{mol} \mathrm{OH}^{-}\left(=\left(38.2 \times 10^{-3}\right) \times 0.550\right)$
$=2.10(1) \times 10^{-2}$ or $0.0210(1)$
Mark for answer

M2 $\mathrm{Mol} \mathrm{H}^{+}\left(=\left(25.0 \times 10^{-3}\right) \times 0.620\right)$
$=1.55 \times 10^{-2}$ or 0.0155
Mark for answer

M3 excess mol OH ${ }^{-}=5.5(1) \times 10^{-3}$
Allow conseq for M1-M2
If wrong method e.g. no subtraction or use of $\sqrt{ }$ can only score max of M1, M2, M3 and M4.

1

M4 $\left[\mathrm{OH}^{-}\right]=5.51 \times 10^{-3} \times \frac{10^{3}}{63.2} \quad\left[\begin{array}{ll}=0.08718 & (0.0872)\end{array}\right]$

OR $\left[\mathrm{OH}^{-}\right]=5.5 \times 10^{-3} \times \frac{10^{3}}{63.2}=0.0870(2)$
(M1-M2) / vol in dm^{3} mark for dividing by volume
(take use of 63.2 without 10^{-3} as $A E$ so 9.94 scores 5)
If no use or wrong use of vol lose M4 \& M6
Can score M5 for showing (10-14/ their XS alkali)

M5 $\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.08718}=1.147 \times 10^{-13}$

$$
\begin{array}{ll}
\text { OR } & \frac{10^{-14}}{0.0870}=1.149 \times 10^{-13} \\
\text { OR } & \mathrm{pOH}=1.06 \\
& \text { If no use or wrong use of } K_{w} \text { or } p O H \text { no further marks }
\end{array}
$$

M6 $\mathrm{pH}=12.9$ (4) allow 3sf
If vol missed score max 4 for 11.7(4)
If acid- alkali reversed max 4 for $\mathrm{pH}=1.06$
Any excess acid - max 4

