

A-Level Chemistry

Calculation of pH

Mark Scheme

Time available: 77 minutes Marks available: 73 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) Ans = C
- (b) $[H^+] = \sqrt{K_w} = \sqrt{2.93 \times 10^{-15}}$ (= 5.41 × 10⁻⁸)

1

1

pH =
$$(-\log (5.41 \times 10^{-8}) = \underline{7.27}$$

Must be 2dp

7.27 scores 2 marks

1

(c) $[H^+] = [OH-]$

allow description in words

equal moles / quantities / numbers / ratio of H⁺ and OH⁻

1

(d) $[OH^-] = 0.0131 \times 2 = 0.0262$

pH = 12.95 scores 3 marks

pH = 12.42 scores 2 marks $(K_w = 1 \times 10^{-14})$

pH = 12.65 scores 1 mark (not multiplied by 2)

pH = 12.35 scores 1 mark (divided by 2)

pH = 12.12 scores 0 marks (no \times 2 and wrong K_w)

1

$$[H^+] = (K_W / [OH^-]) = 2.93 \times 10^{-15} / 0.0262 (= 1.118 \times 10^{-13})$$

1

pH =
$$(-\log (1.118 \times 10^{-13}) = 12.9514 = 12.95$$

Or

 $[OH^{-}] = 0.0131 \times 2 = 0.0262$

 $pOH = (-log \ 0.0262) = 1.5817$

pH =(
$$-\log K_w$$
- pOH = $-\log 2.93 \times 10^{-15}$ -1.58 = 14.53 - 1.58) = 12.95

allow to 2dp or more

1

(e) smaller / lower pH / less alkaline / more acidic

If not smaller CE = 0/2

Allow pH number between 8 and 12

1

(magnesium hydroxide) is less soluble / sparingly soluble/ solubility of hydroxide increases down group II

M2 dependent on M1 but if blank mark on

Ignore concentration and dissociation

Ignore incorrect formula

Do not allow Mg(OH)₂ is insoluble

1

[9]

- (b) Completely ionises to give H⁺ ions in water
- (c) $0.058 \text{ mol dm}^{-3}$

1.24

(d) Amount of NaOH = 5.25×10^{-3}

Since 1:1 reaction amount of OH- ions in excess

$$= 5.25 \times 10^{-3} - 1.45 \times 10^{-3} \text{ mol}$$

 $= 3.80 \times 10^{-3} \text{ moles OH}^-$

 $[OH^{-}] = 3.80 \times 10^{-3} \times 1000/60 = 0.0633$

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^- \text{ so } {\rm H}^+ = \frac{10^{-14}}{0.0633} = 1.58 \times 10^{-13}$$

pH = 12.80

(e) Amount of OH^- added 1.5 / 40 = 0.0375 mol

Use of 1:1 ratio to calculate amount of A⁻ formed = 0.0375 mol

Amount of weak acid initially = $1 \times 0.15 = 0.150$ mol so amount of weak acid after addition of NaOH = 0.150 - 0.0375 = 0.1125

If M3 incorrect can only score max of 3 marks

$$[H^+] = K_a [HA]/[A^-] \text{ or } [H^+] = 1.79 \times 10^{-5} \times 0.1125/0.0375$$

 $= 5.37 \times 10^{-5}$

pH = 4.27

[15]

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3.

(a) $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$

OR

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

Must show ≠

Allow CH₃CO₂H, CH₃CO₂⁻¹

Ignore state symbols

(b) $(CH_3COOH + \underline{HNO_3} \rightarrow CH_3COOH_2^+ + NO_3^-)$ IGNORE = $Allow CH_3CO_2H, CH_3CO_2H_2^+, CH_3C^+(OH)_2$

(c) (i) (new [HNO₃] = [H⁺] = $\frac{100}{150}$ × 0.0125)

M1 $[H^+] = 8.3(3) \times 10^{-3} \text{ (mol dm}^{-3})$ *OR*

 $new[HNO_3] = \frac{mol\ HNO_3}{total\ vol} = \frac{1.25 \times 10^{-3}}{150 \times 10^{-3}}$

M2 pH = - log M1 OR 2.08

Must be 2dp

Allow correct pH conseq to their [H+] concentration

(ii) M1 mol NaOH (= $50 \times 10^{-3} \times 0.0108$) = 5.40×10^{-4}

M2 Subtraction of M1 from moles of HNO_3 (1.25 x 10^{-3} or conseq from 1c(i))

Excess mol H⁺ = 7.10×10^{-4}

M2 allow ecf for subtraction of mol

If no subtraction, no further marks

M3 [H⁺] = $\frac{M2}{150 \times 10^{-3}}$ OR $\frac{7.10 \times 10^{-4}}{150 \times 10^{-3}} = 4.73 \times 10^{-3}$

M3 if no use of volume, no further marks (pH=3.15)

If incorrect volume used, can score M4

M4 pH = -log M3 OR 2.32 *M4 Allow 2.33 Must be 2 dp*

1

1

1

1

1

1

1

(d) (i) M1
$$K_{a} = \frac{[H^{+}][CH_{3}COO^{+}]}{[CH_{3}COOH]}$$

Penalise () once here Not $[H+][A-]/[HA]$

If K_{a} expression wrong — Allow correct pH conseq to their $[H^{+}]$ concentration M4 only

M2 $K_{a} = \frac{[H^{+}]^{2}}{[CH_{3}COOH]}$ or with numbers or with HA

M3 $[H^{+}] = [\sqrt{(1.74 \times 10^{-5} \times 0.0125)}] = 4.66 \times 10^{-4}$

Mark for answer

1

M4 pH = 3.33

Must be 2dp

Allow correct pH conseq to their $[H^{+}]$ concentration (pH = 3.83 can score M1, M2 and M4)

(ii) Sodium ethanoate

Ignore formula

Allow sodium acetate

(iii) M1 $[H^{+}] = 1.45 \times 10^{-5}$

Accept 1.445 × 10⁻⁵ or 1.4 × 10⁻⁵

If M1 incorrect CE=0

Inclusion of 0.0125 in calculation can only score M1

M3 1.2(0)

Ignore units

1.4 × 10⁻⁵ gives 1.24

(e)	M1	(Electronegative) chlorine withdraws electrons Allow CI has negative inductive effect	1	
	M2	Stabilises/reduces charge on COO-	•	
		OR weakens <u>O-H</u> bond		
		OR makes O-H more polar Ignore chloroethanoic acid dissociates more readily Mark independently	1	
(f)	M1	Strong acids (almost) completely dissociated/ionised		
		OR not an equilibrium		
		OR equilibrium lies <u>far</u> to the right Cannot have K _a value for a reaction not in equilibrium scores both marks	1	
	M2	$\underline{K}_{\!a}$ value for strong acids tends to infinity/is very large OR can't divide by zero in $K_{\!a}$		
			1	[20]
(a)	(only)	slightly or partially dissociated / ionised Ignore 'not fully dissociated'. Allow low tendency to dissociate or to lose / donate a proton. Allow shown equilibrium well to the left. Otherwise ignore equations.		1
				_

(b) $2CH_3CH_2COOH + Na_2CO_3 \longrightarrow 2CH_3CH_2COONa + H_2O + CO_2$ OR

 $2CH_3CH_2COOH + CO_3^{2-} \longrightarrow 2CH_3CH_2COO^- + H_2O + CO_2$

OR

CH₃CH₂COOH + Na₂CO₃ → CH₃CH₂COONa + NaHCO₃

OR

 $CH_3CH_2COOH + CO_3^{2-} \longrightarrow CH_3CH_2COO^- + HCO_3^{-1}$

Must be propanoic acid, allow C₂H₅COOH.

Not molecular formulae.

Allow multiples.

Ignore reversible sign.

Not H₂CO₃.

(c) $[OH^{-}] = 2 \times 0.0120 = 0.0240$ M1

Correct answer for pH with or without working scores 3.

 $[H^+] = \frac{1 \times 10^{-14}}{0.0240} = 4.166 \times 10^{-13} \, OR \, pOH = 1.62$ M2

If \times 2 missed or used wrongly can only score M3 for correct calculation of pH from their [H $^+$].

pH = 12.38 M3

Lose M3 if not 2 decimal places: 12.4 scores 2.

12.08 scores 1 (missing x 2); 12.1 scores 0.

11.78 scores 1 (dividing by 2) 11.8 scores 0.

(d) (i) $K_a = \frac{[H^+][C_6H_5COO^-]}{[C_6H_5COOH]}$

Ignore () here but brackets must be present.

Must be correct acid and salt.

If wrong, mark part (ii) independently.

www.accesstuition.com

1

1

1

1

(ii) M1
$$K^{a} = \frac{[H^{+}]^{2}}{[C_{6}H_{5}COOH]}$$
 OR with numbers

Correct answer for pH with or without working scores 3.

Allow HX, HA and ignore () here.

May score M1 in part (i).

M2 [H⁺] =
$$\sqrt{(6.31 \times 10^{-5} \times 0.0120)}$$
 or $\sqrt{(K_a \times [C_6H_5COOH])}$
(= $\sqrt{(7.572 \times 10^{-7} = 8.70 \times 10^{\times 4})}$

pH = 6.12 may score 2 if correct working shown and they show the square root but fail to take it.

But if no working shown or wrong $K^a = \frac{[H^+]}{[C_6H_5COOH]}$

used which also leads to 6.12, then zero scored.

M3
$$pH = 3.06$$

Must be 2 decimal places ie 3.1 loses M3.

(iii) M1
$$[H^+] = 10^{-4.00} = 1.00 \times 10^{-4}$$

Correct answer for mass with or without working scores 5.
Allow 1×10^{-4} .

M2 $[X^{-}] = \frac{\text{Ka x [HX]}}{[H^{+}]}$

Ignore () here.

If $[HX]/[X^-]$ upside down, can score M1 plus M4 for 5.26×10^{-7} .

M3 =
$$\frac{6.31 \times 10^{-5} \times 0.0120}{1.00 \times 10^{-4}}$$

And M5 for 7.57×10^{-5} g.

$$M4 = 7.572 \times 10^{-3}$$

1

1

1

1

1

M5 Mass (C_6H_5COONa) = 7.572 × 10⁻³ × 144 =1.09 g or 1.1 g Wrong method, eg using [H+]² may only score M1 and M5 for correct multiplication of their M4 by 144 (provided not of obviously wrong substance). CO_2 (e) M1 Allow NO_x and SO₂. 1 M2 pH (It) falls / decreases If M1 wrong, no further marks. 1 М3 mark M2 & M3 independently acidic (gas) **OR** reacts with alkali(ne solution) / OH⁻ **OR** $CO_2 + 2OH^- \longrightarrow CO_3^{2-} + H_2O$ OR $CO_2 + OH^- \longrightarrow HCO_3^-$ Not forms H₂CO₃ H₂SO₃ H₂SO₄ etc OR H⁺ ions. 1 [17] (a) $[H^+] = 0.0170$ 1 pH = 1.77**M2** 2 dp Allow M2 for correct pH calculation from their wrong [H+] for this pH calculation only 1 (b) (i) $K_{a} = \frac{\left[H^{+} X^{-}\right]}{\left[HX\right]^{2}}$ Ignore $K_a = \frac{\left[H^+\right]^2}{\left[HX\right]}$

5.

(ii)

Penalize missing [] here and not elsewhere

Allow HA instead of HX

M1 [H⁺] = $10^{-2.79}$ OR $1.6218... \times 10^3$

If [H+] wrong, can only score M2

1

M2
$$K_a = \frac{[H^+]^2}{[HX]}$$
 OR $\frac{[1.62 \times 10^{-3}]^2}{[0.0850]}$

Allow HA instead of HX

M3
$$K_a = 3.09 \times 10^{-5}$$
 3sfs min
(allow 3.10 $\times 10^{-5}$ if 1.6218 rounded to 1.622)
Ignore units
If [HX] used as $(0.0850 - 1.62 \times 10^{-3})$
this gives $K_a = 3.15 \times 10^{-5}$
 $(0.0016)^2/0.085 = 3.01 \times 10^{-5}$ scores 2 for AE

(c) M1 mol OH⁻ (=
$$(38.2 \times 10^{-3}) \times 0.550$$
)
= $2.10(1) \times 10^{-2}$ or $0.0210(1)$
Mark for answer

M2 Mol H⁺ (=
$$(25.0 \times 10^{-3}) \times 0.620$$
)
= 1.55×10^{-2} or 0.0155
Mark for answer

M3 excess mol OH⁻ =
$$5.5(1) \times 10^{-3}$$

Allow conseq for M1 – M2
If wrong method e.g. no subtraction or use of $\sqrt{}$
can only score max of M1, M2, M3 and M4.

M4 [OH⁻] = 5.51 × 10⁻³ ×
$$\frac{10^3}{63.2}$$
 [= 0.08718 (0.0872)]

OR
$$[OH^-] = 5.5 \times 10^{-3} \times \frac{10^3}{63.2} = 0.0870(2)$$

(M1 – M2) / vol in dm³ mark for dividing by volume (take use of 63.2 without 10⁻³ as AE so 9.94 scores 5) If no use or wrong use of vol lose M4 & M6
Can score M5 for showing (10⁻¹⁴/ their XS alkali)

www.accesstuition.com

M5 [H⁺] =
$$\frac{10^{-14}}{0.08718}$$
 = 1.147 × 10⁻¹³

$$OR \quad \frac{10^{-14}}{0.0870} = 1.149 \times 10^{-13}$$

OR pOH = 1.06
If no use or wrong use of
$$K_w$$
 or pOH no further marks

M6 pH = 12.9(4) allow 3sf

If vol missed score max 4 for 11.7(4)

If acid— alkali reversed max 4 for pH = 1.06

Any excess acid — max 4

[12]