

A-Level Chemistry

Calorimetry

Mark Scheme

Time available: 57 minutes Marks available: 48 marks

Mark schemes

1. (a) Enthalpy change when one mole of a substance burns completely in oxygen Allow heat energy change / allow fully combust

With all substances in their standard states (at stated temperature and 100kPa)
(b) $q=m \mathrm{c} \Delta \mathrm{T}=150 \times 4.18 \times 13.9=8715.3 \mathrm{~J}$
$\mathrm{n}($ propan $-1-\mathrm{ol})=\frac{0.497}{60.0}=0.00828 \mathrm{~mol}$
$\Delta \mathrm{H}=--\frac{8.7153}{0.00828}=-1050 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$M 3=-M 1 \times 10^{-3} / M 2$
Minimum of 2 sf needed
Must be negative
(c) Incomplete combustion

Evaporation of fuel

Experiment not completed under standard conditions
2. (a) Heat energy change at constant pressure
(b)

This question is marked using Levels of Response.

Level 3:

All stages are covered and the explanation of each stage is generally correct and virtually complete.
Answer is well structured with no repetition or irrelevant points.
Accurate and clear expression of ideas with no errors in use of technical terms.

Level 2:

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.
Answer shows some attempt at structure.
Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points.
Some minor errors in use of technical terms.

Level 1:

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete.

Answer includes isolated statements but these are not presented in a logical order or show some confusion.
Answer may contain valid points which are not clearly linked to an argument structure. Errors in the use of technical terms.

Level 0:
Insufficient correct chemistry to gain a mark.

Indicative Chemistry

Stage 1: Apparatus

1a. Use a burette/pipette (instead of a measuring cylinder)
1b. Use a polystyrene cup (instead of a beaker) / insulate beaker
1c. Reweigh the watchglass after adding the solid 1d: Use powdered solid

Stage 2: Temperature Measurements

2a. Measure and record the initial temperature of the solution for a few minutes before addition
2b. Measure and record the temperature after the addition at regular intervals (eg each minute) for 8+ minutes/until a trend is observed

Stage 3: Temperature Determination

3a. Plot a graph of temperature against time
3b. Extrapolate to the point of addition
3c. Determine ΔT at the point of addition
(c) $n(H C l)$ or $n(N a O H)=50 \times 0.500 / 1000=0.025$ moles

$$
q=-\Delta H \times n=57.1 \times 0.025=1.4275 \mathrm{~kJ}
$$

$$
\mathbf{M} 2=57.1 \times \mathbf{M 1}
$$

$$
\Delta \mathrm{T}=(1.4275 \times 1000) /(100 \times 4.18)=3.4(2)^{\circ} \mathrm{C}
$$

$$
M 4=(M 2 \times 1000) /(100 \times 4.18)
$$

Final Temperature $=18.5+3.4=21.9^{\circ} \mathrm{C}$ M5 = M4 + 18.5 (but final temperature must be higher than $18.5^{\circ} \mathrm{C}$)
(d) Increase the concentration of the solutions
3. (a) Amount of hexane $=\frac{2}{86}=0.0233 \mathrm{~mol}$

$$
q=4154 \times 0.0233(=96.6-96.8 \mathrm{~kJ})
$$

$C_{\text {cal }}=\frac{96.6}{12.4}=7.79-7.81\left(\mathrm{~kJ} \mathrm{~K}^{-1}\right)$

$$
e c f=M 1 \times 4154
$$

ecf $=$ M2/12.4
If no other marks awarded, allow one mark for 4154/12.4 = 335
(b) $\quad q=C_{\mathrm{cal}} \Delta T=7.79 \times 12.2=95.0 \mathrm{~kJ}$

Ecf for (a) $\times 12.2$
If candidate converted 12.4 into kelvin in (a), ignore conversion to kelvin in (b)
(amount of octane $\left.=\frac{2}{114}=0.0175 \mathrm{~mol}\right)$
heat change per mole $=\frac{95.0}{0.0175}=5417 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Allow $5420 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Using the value given:
$6.52 \times 12.2=79.54(4)$
$79.54 / 0.0175=4545$
(c) pressure not constant in bomb calorimeter

Allow enthalpy change requires constant pressure
(d) $100 \times \frac{0.2}{12.2}=1.64 \%$

Allow 1.6\%
Allow 2\% if working shown
NOT 2.0\%
use bigger mass of fuel (so ΔT greater)
Allow octane or hexane as the fuel
Allow more / greater volume of fuel
4. (a) M1 moles $\left(=\frac{25}{1000} \times 2.0\right)=0.050$

M2 heat released $=0.050 \times 56.1(=2.805 \mathrm{~kJ}$ or 2805 J$)$

M3 $\Delta T=\frac{\mathrm{q}}{\mathrm{mc}}$

M4 $\Delta \mathrm{T}=\frac{2805}{50 \times 4.18}$ or $\frac{1000 \times 0.050 \times 56.1}{50 \times 4.18}=13(.4)\left({ }^{\circ} \mathrm{C}\right)$
Correct answer (to at least 2 sig fig) scores 4 marks
27 or $26.8^{\circ} \mathrm{C}$ (from moles of two reagents being added together for M2, or use of $25 \mathrm{~cm}^{3}$ in M4) scores 3 marks
$0.013(.4)^{\circ} \mathrm{C}$ (from not converting kJ to J) scores 3 marks (loses M4) [0.027 or $0.0268^{\circ} \mathrm{C}$ would score 2 marks (loses M2 and M4)
M1 moles can be shown for either substance or without specifying the substance; if it is shown for both substances, must be correct for both for M1
Allow ECF from M1 to M2
Allow ECF from M2 to M4 (providing an attempt to calculate q has been made - no ECF if 56100 or 56.1 is used as q)
Correct M4 scores M3. If error made in M4, M3 could score from substituted values in this expression in M4
M4 final answer to at least 2 sig fig.
Penalise M4 for negative temperature rise
(b) M1 draws suitable best fit curve to 4 minutes

M1 line must be a curve and ignore value at 5 minutes
M1 line should not go to times before 4 minutes

M2 (17.2 - value read from graph line at 4 minutes) $\pm 0.2\left({ }^{\circ} \mathrm{C}\right)$
M2 allow use of any curved or straight line that is an attempt to draw a line through the values after 4 minutes (that may include the point at 5 minutes)
M2 allow negative values
[6]
5. (a)

M1 moles cyclohexane $=\frac{192.730-192.100}{84(.0)}$ or $\frac{0.630}{84(.0)}(=0.00750)$
Correct answer scores 4 marks
1
M2 heat released $=1216 \times 1000 \times 0.0075(=9120)(\mathrm{J})$
[or $1216 \times 0.0075=(9.12)(\mathrm{kJ})$]
0.0075 scores M1 with or without working

9120 or 9.12 scores M1 and M2 with or without working
1
M3 $\Delta T\left(=\frac{\mathrm{q}}{\mathrm{mc}}=\frac{9120}{50(.0) \times 4.18}\right)=43.6$
Allow ECF at each stage
correct M3 scores M1 and M2
1
$\mathbf{M 4}$ final temperature $=19.1+\mathbf{M} \mathbf{3}=62.7$ or $63\left({ }^{\circ} \mathrm{C}\right)$
1
Alternative M3/4
M3 $9120=50 \times 4.18 \times($ Final T -19.1$)$
M4 Final $\mathrm{T}=62.7$ or $63\left({ }^{\circ} \mathrm{C}\right)$
Ignore negative sign for q in $\mathbf{M} 2$ and/or ΔT in M3, but penalise if used as a temperature fall in M4 (if alternative method used for M3/4 and negative value for q is used, allow M3 for expression with negative q value but do not allow M4)
(temperatures to at least 2sf)
If candidates use a value in $k J$ rather than J to find ΔT / final T then they lose M3, but ECF to M4 [e.g. 9.12 rather than 9120 giving $\Delta T=0.0436$ and final temperature $=19.1(436)$ - this would give 3 marks]
If candidates use 0.63 g for m in M3, they will get $\Delta T=3.46$ and final temperature $=22.56$ - this would give 3 marks]
Cannot score M2 using moles = 1
(b) thermal energy / heat loss or
or idea of heat being transferred to calorimeter
incomplete combustion or
allow idea that it is not under standard conditions
evaporation
allow no lid / poor/no insulation
(c) M1 $6 \times(-394), 6 \times(-286)$ and -3920

```
\(\mathbf{M 2}(\Delta \mathrm{H}=)[6 \times(-394)]+[6 \times(-286)]+3920\)
        (or \((\Delta \mathrm{H}=)[-2364)]+[-1716)]+3920)\)
        (or \((\Delta H=)-4080+3920)\)
```

$\mathbf{M} 3=-160(\mathrm{~kJ} \mathrm{~mol}-1)$
-160 scores 3 marks; +160 scores 2 marks
-8000 scores 2 marks; +8000 scores 1 mark -1876 scores 2 marks; +1876 scores 1 mark
M1 is for correct coefficients, i.e. $6 \times \Delta_{c} H H_{2} \& 6 \times \Delta_{c} H$
C \& $1 \times \Delta_{c} H C_{6} H_{12}$ (ignore whether + or -)
ECF from M1 to M2/3 for incorrect coefficients / arithmetic error / transposition
ECF from M2 to M3 for use of products - reactants Ignore any cycle
6. (a)

	Temp $/{ }^{\circ} \mathrm{C}$		Mass $/ \mathrm{g}$
Initial		Burner before	
Final		Burner after	
$(\Delta \mathrm{T})$		(Mass heptane burned)	

M1 for Temperature data including units
M2 for Burner mass data including units If either unit missing MAX 1
(b) Any two from:

Glass is a poorer conductor than copper

Tripod and gauze would reduce heat transfer
Tripod and gauze would have a fixed height above the flame Heat capacity of metal is less than glass or vice versa
(c) Heat loss to surroundings or to copper/calorimeter

Incomplete combustion
(d) Use a wind shield (to reduce heat loss)

Allow use a lid
Insulate the sides of the calorimeter

