

## **A-Level Chemistry**

## **Carbon NMR**

## **Question Paper**

## Time available: 40 minutes Marks available: 35 marks

www.accesstuition.com

This question is about isomers with the molecular formula  $C_5H_{10}O$ 

1.

(a) Draw the skeletal formula of a branched chain aldehyde with molecular formula  $C_5H_{10}O$  that is optically active.

(b) Describe how you distinguish between separate samples of the two enantiomers of the branched chain aldehyde  $C_5H_{10}O$ 

(c) Draw the *E* and *Z* forms of a structural isomer of  $C_5H_{10}O$  that shows **both** optical and geometric isomerism.

| <i>E</i> isomer | Zisomer |
|-----------------|---------|
|                 |         |
|                 |         |
|                 |         |
|                 |         |
|                 |         |

(2)

(2)

 (d) Isomer J is cyclic and has an ether functional group (C–O–C) Isomer J has only three peaks in its <sup>13</sup>C NMR spectrum.



Draw **two** other cyclic isomers of  $C_5H_{10}O$  that have an ether functional group and only three peaks in their <sup>13</sup>C NMR spectra.

(2) (Total 7 marks)

**2.** This question is about citric acid, a hydrated tricarboxylic acid. Its formula can be represented as  $H_3Y.xH_2O$ 

(a) A 1.50 g sample of  $H_3Y.xH_2O$  contains 0.913 g of oxygen by mass. The sample burns completely in air to form 1.89 g of  $CO_2$  and 0.643 g of  $H_2O$ 

Show that the empirical formula of citric acid is  $C_3H_5O_4$ 

(b) A 3.00 g sample of  $H_3Y.xH_2O$  ( $M_r = 210.0$ ) is heated to constant mass. The anhydrous  $H_3Y$  that remains has a mass of 2.74 g

Show, using these data, that the value of x = 1

| (2) |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
| (1) |
|     |
| (1) |
|     |

(Total 9 marks)

There are several isomers with the molecular formula  $C_6H_{16}N_2$ 

(a) One isomer is shown.

3.

$$H_{3}C - CH_{2}$$
  
 $H_{3}C - CH_{2}$   $N - CH_{2} - CH_{2} - NH_{2}$ 

Give the number of peaks in the <sup>13</sup>C NMR spectrum of this isomer.

State and explain the splitting pattern of the peak for the hydrogens labelled a in its <sup>1</sup>H NMR spectrum.

| Number of <sup>13</sup> C peaks |  |
|---------------------------------|--|
| Splitting pattern               |  |
| Explanation                     |  |
|                                 |  |
|                                 |  |

(b) Draw the structure of the isomer of  $C_6H_{16}N_2$  used to make nylon 6,6

(1)

(c) Draw the structure of the isomer of  $C_6H_{16}N_2$  that contains two **primary** amine groups and has only two peaks in its <sup>13</sup>C NMR spectrum.

(d) Draw the structure of the isomer of  $C_6H_{16}N_2$  that contains two **tertiary** amine groups and has only two peaks in its <sup>13</sup>C NMR spectrum.

(1) (Total 6 marks) 4.

5.



Use this structure to determine the number of peaks in the  $^{13}$ C n.m.r. spectrum of N-phenylethanamide.

(Total 1 mark)

Three cyclic alcohols, cyclohexan–1,2-diol, cyclohexan–1,3-diol and cyclohexan–1,4-diol were compared using <sup>13</sup>C n.m.r. spectroscopy.







cyclohexan-1,2-diol

cyclohexan-1,3-diol

cyclohexan-1,4-diol

The <sup>13</sup>C n.m.r. spectrum of cyclohexan-1,2-diol is shown below.



(c) Suggest why the structures drawn above represents several stereoisomers.

