

A-Level Chemistry

Collision Theory

Mark Scheme

Time available: 58 minutes Marks available: 55 marks

1. (a) As concentration increases the amount of heat given out increases / temperature increases (M1)

Any order.
Ignore references to an exothermic reaction.

More successful collisions or reactions in a given time OR more particles have the activation energy (M2)

Allow could be a second $/ n^{\text {th }}$ order reaction.
(An increase in temperature or more heat given out) increases the rate of a reaction (M3)
(b) The magnesium is coated with an oxide / MgO (M1)

Allow magnesium hydroxide.

MgO / the coating / the corrosion product has to be removed before Mg will react OR Mg and MgO / the coating / the corrosion product react at different rates OR Initially MgO / the coating / the corrosion product reacts not Mg (M2)

Ignore inert coating.
(c) Any two from:

Any order.
Slower with hot water or faster with steam
The hot water produces $\mathrm{Mg}(\mathrm{OH})_{2}$ / the hydroxide $\mathbf{O R}$ steam produces MgO / the oxide
(Slow) bubbling with hot water OR bright white light / flame / white solid with steam

2 max

(d) Magnesium sulfate is soluble and calcium sulfate is insoluble / slightly soluble / magnesium sulfate is more soluble / calcium sulfate is less soluble / correct trend in solubility (M1)

Any order.
M1 requires a comparison of the two solubilities.
Calcium sulfate coats the surface of the calcium (M2)
Coating prevents further contact with / reaction by the acid (M3)
'Calcium sulfate forms a protective coating' scores M2 only.
2. (a) Sulfur OR S OR S8

1
(b) M1 The activation energy is the minimum / least / lowest Mark these independently

M2 Energy for a reaction to occur / to go / to start OR
Energy for a successful / effective collision
(c) Explanation:

M1 Twice as many / double number of particles M1 NOT molecules

M2 More / twice / double (effective) collisions (in a given time) OR
Double / greater / increased collision frequency
(d) (i) (Measured) change in concentration (of a substance) in unit time / given time

May be written mathematically
OR the gradient of the concentration (against) time
(ii) The measured change / amount (of precipitate) / cloudiness is fixed or constant or unchanged
3. (a) the minimum energy;

Energy required for a reaction to occur;
(or to start a reaction or for successful collisions)
(b) axes labelled:- y : number (or fraction or \%) of molecules (or particles) x : energy (or $K E$);

1
curve starts at origin;
1
skewed to right;
approaches x axis as an asymptote;
(penalise a curve that levels off > 10\% of max peak height or a curve that crosses the energy axis)

1
second curve displaced to the left (and does not cross T_{1} curve for a second time)
and peak higher;
many fewer molecules;
fewer molecules have $E>E_{\mathrm{a}}$; (can score this mark from suitably marked curves)
(c) molecules (or particles or collisions) do not have enough energy; (or orientation may be wrong)
increase the pressure;
(or increase the concentration or reduce the volume)
increases the collision frequency;
(or more collisions)
(do not allow if stated to be due to increase in energy implied by temperature increase)
add a catalyst;
lowers activation energy (or E_{a}) (Q of L mark);
4. (a) (i) Change in concentration (of a substance / reactant / product) in unit time / given time / per (specified) unit of time

This may be written mathematically OR may refer to the gradient of a graph of concentration / volume against time

OR

Amount of substance formed / used up in unit time / given time / per (specified) unit of time Ignore additional information including reference to collisions
(ii) At W

M1 (QoL)
The rate / it is zero
M2
The magnesium has all reacted / has been used up Ignore reference to the acid being used up

OR

No more collisions possible between acid and Mg

$O R$

Reaction is complete / it has stopped

OR

No more hydrogen / product is produced
(iii) M1

Twice / double as many particles / hydrogen ions (in a given volume)
Penalise reference to (hydrochloric acid) molecules in M1
Penalise reference to " HCl particles" in M1
OR
Twice / double as much hydrochloric acid
M2
Twice / double as many effective / successful collisions (in a given time)

OR

Twice / double as many collisions with either sufficient energy to react $\boldsymbol{O R}$ with $E \geq E_{a}$

OR
double the successful / effective collision frequency
(b) (i) The activation energy is the minimum energy for a reaction to go / start

OR

Minimum energy for a successful/ effective collision
(c) (i) $\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
$\mathrm{Ba}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}+\mathrm{H}_{2}$
Allow multiples Ignore state symbols
(ii) M1 Products lower than reactants on the profile

Mark independently
M2 Activation energy (E_{a}) shown and labelled correctly from reactants to peak of curve
Mark independently
(ii) $\mathrm{M} 1 \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \longrightarrow \mathrm{BaSO}_{4}$

Ignore state symbols in M1
Not multiples in M1
M2 White precipitate / solid
Extra ions must be cancelled
Penalise contradictory observations in M2
(iii) M1 Barium meal / barium swallow / barium enema

Accept a correct reference to M1 written in the explanation in M2, unless contradictory

OR used in X-rays OR to block X-rays OR X-ray contrast medium OR CT scans

M2 $\mathrm{BaSO}_{4} /$ barium sulfate is insoluble (and therefore not toxic)
For M2 NOT barium ions
NOT barium
NOT barium meal and NOT "lt"
Ignore radio-tracing

5. (a) Award in either order for curve

"Steeper" requires line to be on the left of the original line, starting from the origin

M1 curve is steeper than original and starts at the origin
M2 curve levels at the top line on the graph
(b) Award in either order for curve
"Shallower" requires line to be on the right of the original line, starting from the origin

M1 curve is shallower than original and starts at the origin
M2 curve levels at the first line on the graph
(c) M1 curve would be steeper than original
"Steeper" requires line to be on the left of the original line, starting from the origin

M2 curve levels at the same original volume of O_{2}
(d) M1 The (concentration / amount of) ${\underline{\mathrm{H}_{2}} \mathrm{O}_{2} \text { or reactant falls / decreases / used up }}_{\text {(d) }}$ Mark independently

OR
The number of $\underline{\mathrm{H}_{2} \mathrm{O}_{2}}$ or reactant molecules/ particles falls / decreases
M2
The rate of reaction / rate of decomposition / rate of formation of oxygen / frequency of collisions / (effective) collisions in a given time decreases / is slower

2
(e) (i) $\mathbf{2 H} \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ Ignore state symbols
Accept only this equation or its multiples Extra species must be crossed through
(ii) hydrogen bromide / it does not appear in the overall equation

OR

hydrogen bromide / it is not used up in the reaction / unchanged at the end of the reaction

OR
hydrogen bromide / it is regenerated / re-formed (in Step 2)

