

A-Level Chemistry

Covalent and Dative Bonding

Mark Scheme

Time available: 61 minutes Marks available: 60 marks

1. (a) (i) Hydrogen bonds / H bonds Not just hydrogen.
(ii)

M1 - lone pair on each N.
M2 - correct partial charges must be shown on the N and H of a bond in each molecule.
M3 - for the H bond from lone pair on N to the H^{+}on the other NH_{3} molecule.
If not ammonia molecules, $C E=0 / 3$.
(b) Lone pair / both electrons / 2 electrons / electron pair on $\mathrm{N}\left(\mathrm{H}_{3}\right)$ is donated to $\mathrm{B}\left(\mathrm{Cl}_{3}\right)$ Allow both electrons in the bond come from $\left.\mathrm{N}_{(} \mathrm{H}_{3}\right)$.
(c) (i) The power of an atom or nucleus to withdraw or attract electrons or electron density or a pair of electrons (towards itself)
in a covalent bond
(ii) LiF OR $\mathrm{Li}_{2} \mathrm{O}$ OR LiH

Allow $\mathrm{Li}_{2} \mathrm{O}_{2}$, allow correct lithium carbide formula.
(iii) $\mathrm{BH}_{3} / \mathrm{H}_{3} \mathrm{~B}$

Allow $B_{2} H_{6} / H_{6} B_{2}$
Do not allow lower case letters.
2. (a) (i) shared pair of electrons

Can have one electron from each atom contributes to the bond Not both electrons from one atom
(ii) $\frac{1}{2} \mathrm{Cl}^{2+\frac{3}{2}} \mathrm{~F}^{2} \rightarrow \mathrm{ClF}_{3}$

Only
Ignore state symbols even if wrong
(b)

Allow any structure with 4 bp
In CClF_{2}, watch for Cl in centre- it must be C
Ignore wrong bond angles
Representations of lone pairs allowed are the two examples shown with or without the electrons in the lobe.
Also they can show the lone pair for either structure by two crosses/dots or a line with two crosses/dots on it e.g.

Or a structure with 3 bp and 2 lp
(c) Dipole - dipole

Allow van der Waals/vdw/London/dispersion/temporary dipole induced dipole
Not dipole alone
(d) (i) Coordinate/dative (covalent)

If wrong $C E=0 / 3$ but if 'covalent' or left top line blank, mark on.
(Lone) pair of electrons/both electrons (on F^{-})
$C E$ if lone pair is from B
1
Donated from $\mathrm{F}^{-/ f l u o r i d e ~ o r ~ d o n a t e d ~ t o ~ t h e ~} \mathrm{BF}_{3}$
Must have the - sign on the Fie F^{-} Ignore FIM3 dependent on M2
(ii) 109° to 109.5°
(e) $\frac{238 \times 100}{438}$

For 1 mark allow 238 as numerator and 438 as denominator or correct strings
$=54.3 \%$
2 marks if correct answer to 3 sig figs.
54% or greater than 3 sig figs = 1 mark

1
3. (a) (i) Covalent (1)
(ii) Co-ordinate (1) (or dative)
(iii) Both / two / pair electrons come from nitrogen (1)
(iv) 4 bonding / electron pairs (1)
repel equally (1)
OR are identical
as far apart as possible (1)
OR to position of minimum repulsion
tetrahedron (1)
(b) Power (or ability) of an element / atom to attract electron pair/electrons/ an electron/electron density (1)
in a covalent bond (1)
Allow attract from, withdraw in, do not allow remove from, withdraw from.
(c) (i) Electron deficient (1)

Or small, slight, partial positive charge
(ii) $\mathrm{H}<\mathrm{N}(1)$
4. (a) Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself);

Not withdraw an electron
If ref to ionic, metallic , imf etc then $C E=0$

From a covalent bond or from a shared pair of electrons;
Not distort
Not remove electrons
(b) Van der Waals/ vdw/London/ temporary (induced) dipole/ dispersion forces;

Hydrogen bonds/H bonds;
Not just hydrogen
(c) (Large) electronegativity difference between $\mathrm{N}+\mathrm{H} /$ difference of 0.9 / N very electronegative;

Insufficient to say $N=3.1$ and $H=2.1$

Forms N δ - / H $\delta+$ or dipole explained in words;
Not N becomes (fully) negative or vice versa
1
Lone pair on N attracts/forms weak bonds with $\mathrm{H}(\delta+)$;
QWC
Can score M2 and 3 from a diagram
(d) Co-ordinate/dative;

If not correct then $C E=0$. If covalent/blank mark on
1
Both electrons/ lone pair (on $\mathrm{P} / \mathrm{PH}_{3}$)
Not lone pair on hydrogen

Shares/donated from $\mathrm{P}\left(\mathrm{H}_{3}\right) /$ to $\mathrm{H}(\delta+)$;
(e) 3 bonds and 1 lp attached to As;

Must label H and As atoms
Accept distorted tetrahedral not bent tetrahedral
1
Pyramidal/tetrahedral/ trigonal pyramidal;
Not bipyramidal/triangular
1
(f) (Only) weak Van der Waals forces between molecules $/ \mathrm{AsH}_{3}$ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds;

Accept has no H bonds.
Ignore dp-dp in AsH_{3} provided ammonia has stronger IMF. If between atoms mentioned $C E=0$
Break bonds $C E=0$
(g) $4 \mathrm{AsCl}_{3}+3 \mathrm{NaBH}_{4} \rightarrow 4 \mathrm{AsH}_{3}+3 \mathrm{NaCl}+3 \mathrm{BCl}_{3} ;$

Accept multiples
5. (a) Covalent

If not covalent $C E=0 / 2$
If dative covalent $C E=0 / 2$
If blank mark on
Ignore polar
If number of pairs of electrons specified, must be 3

Shared pair(s) of electrons / one electron from Br and one electron from F
Not 2 electrons from 1 atom
Not shared pair between ions/molecules
(b) (i)

or

BrF_{3} should have 3 bp and 2 lp and correct atoms for the mark Penalise FI
BrF_{3} if trigonal planar shown $=120^{\circ}$
Allow $84-90^{\circ}$ or 120° and ignore 180°
or if T shape shown $84-90^{\circ}$
Irrespective of shape drawn
(ii)

BrF_{4}^{-}should have 4 bp and 2 lp and all atoms for the mark (ignore sign)
Allow FI
$\mathrm{BrF}_{4}-90^{\circ}$
Only
Ignore 180°
(c) Ionic or (forces of) attraction between ions / bonds between ions

If molecules, IMF, metallic, $C E=0$
If covalent bonds mentioned, $0 / 3$, unless specified within the BrF_{4}^{-} ion and not broken
Ignore atoms

Strong (electrostatic) attraction / strong bonds / lots of energy needed to break bonds

Between K^{+}and BrF_{4}^{-}ions/oppositely charged ions / + and - ions
If ions mentioned they must be correct
Strong bonds between + and - ions $=3 / 3$
(d) (i) Hydrogen bonds/hydrogen bonding/H bonds/H bonding Not just hydrogen
(ii)

One mark for 4 partial charges
One mark for 6 lone pairs
One mark for H bond from the lone pair to the $\mathrm{H} \delta+$
Allow FI
If more than 2 molecules are shown they must all be correct.
Treat any errors as contradictions within each marking point.
$C E=0 / 3$ if incorrect molecules shown.
(e) vow / van der Wails forces between molecules

CoL
Not vow between HF molecules, $C E=0 / 2$
$v d w$ between atoms, $C E=0 / 2$
If covalent, ionic, metallic, $C E=0 / 2$

IMF are weak / need little energy to break IMF / easy to overcome IMF

