

A-Level Chemistry

DNA

Mark Scheme

Time available: 60 minutes Marks available: 51 marks

1. (a)

M1 scored for the $2 H$ 'bonds' between A and T

Lose 1 for each extra 'bond'
H bonds must be linear
Penalise the use of full bonds instead of dashed lines once only Ignore lone pairs and partial charges even if wrong
(b)

M1 scored for correct selection of cytosine and associated sugar
M2 scored for selection of correct (upper) phosphate
M1 \& M2 can be scored with one 'ring'
Allow ring either side of the top O of either phosphate
If wrong base circled, can score M2 for correct phosphate conseq to their base, i.e. top left, Thymine it's the upper phosphate top right, Adenine it's the lower phosphate bottom right, Guanine it's the lower phosphate
(c) (Complementary means the two strands must have base sequences) that match (all) A to T and C to G

Ignore reference to (hydrogen) bonding
2. (a) $1 \begin{array}{lllll} & 2 & 3 & 4 & 5\end{array}$

T G C A G
(c)

1 for completed 2-deoxyribose plus A
Allow either OH or trailing bonds
Don't penalise 'sticks' in 2-deoxyribose.

1 for correct phosphate joined to CH_{2}
If two phosphates shown $\mathrm{CE}=0$
If CH_{2} missing award 1 if no further errors
If phosphate attached to oxygen on C3 award 1 if no further errors
3. (a) X-base

Y - phosphate (group)
Ignore organic
Any mention of sugar in either loses that mark
(b) If not Thymine $\mathrm{CE}=0$

Correct structure scores 2 , penalise by 1 each error in

- structure of thymine
- orientation of thymine
- hydrogen bonding

Ignore Ip on N and O
Don't penalise non-linear H bonds
on RHS of thymine - allow with or without H or - [DNA strand]
4. (a)

$C E=O$ if nucleotide does not contain one base, one sugar and one phosphate.
Max 2 for any slips in structures.
Correct phosphate-sugar link on C3.
Allow phosphate attached to C5.

Correct sugar-guanine link on C 1 .
1
Remainder of molecule correct.
(b)

Correct diagram of cytosine (base pair with guanine).
$C E=0$ if wrong base shown.

Three hydrogen bonds drawn.
Allow M2 if slip in M1.
(c) There are only two H -bonds in the adenine-thymine base pair.

Allow there is one fewer H -bond in the AT base pair.
(d) The amino/- NH_{2} groups in urea
are able to substitute for the H -bonds in the double helix.
Allow H bonds will form between the urea and the DNA strands.
5. (a) DNA Replication

NOT mitosis
NOT DNA synthesis
Ignore terms relating to cell division processes
Ignore 'damages DNA'
Ignore DNA transcription
Ignore 'cell replication'
(b) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{Cl}^{-}$ M1 Correct formula and charge of B

M2 Correct balancing and charges in equation
Allow M2 if the only error in complex B is the charge (M1 not awarded) with Cl- only
ALLOW complexes without [] and/or () around $\mathrm{H}_{2} \mathrm{O}$ IGNORE () around CI
NOT any additional different species (loses M2)
(allow uncancelled water on both sides)
(c)

M1 Pt in a cis-diammine complex bonded to the correct nitrogen atoms

Pt must have the two ammonia ligands shown
NOT if drawn as trans
IGNORE any charge on Pt
Ignore any wedges and dashes (3D representations)
M2 both lone pairs shown OR two arrows indicating co-ordinate bonds
Allow M2 if bonds to platinum are from the incorrect nitrogen atoms
(d) M1 plot concentration (y-axis) against time (x-axis) and take tangents / (calculate the) gradients (to calculate rates)

Allow concentration-time graph
NOT time-concentration graph (unless clarified in words or sketch) but mark on

M2 Plot rate/gradients against conc

M3 straight line through origin / directly proportional confirms first order allow first order if rate halves/doubles when conc halves/doubles

Alternatives to M2 and M3:
M2 Plot a graph of log rate vs log conc
M3 (Straight) line of gradient = 1
M2 measure (at least) two half-lives (in this case, tangents not required for M1)
M3 constant half-life means first order
M2 compare rates/gradients at different concentrations
M3 first order if rate halves when conc halves
(e)

temperature, $\boldsymbol{T} / \mathrm{K}$	$\frac{\mathbf{1}}{\boldsymbol{T}} \mathbf{K}^{-1}$	rate constant, $\boldsymbol{k} / \mathbf{s}^{-1}$	$\ln \boldsymbol{k}$
318	0.00314	6.63×10^{-7}	-14.2

Allow 3.14×10^{-3}
(f)

Gradient $=-13125$
$\left(-13125=\frac{-E_{3}}{R}\right)$
$E_{\mathrm{a}}=13125 \times 8.31=109069$
$=109\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Vertical axis with sensible scales (plotted points must take up more
than half the grid) NOT M1 if y-axis in wrong direction
all points plotted correctly (within ± 0.5 small square)
Best fit straight line based on the student's data (ignoring anomalous point if relevant)

Gradient calculated within range: 12876-13598
Mark is for their (gradient x 8.31) and conversion into kJmol^{-1}
E_{a} in the range: $107-114 \mathrm{~kJ} \mathrm{~mol}^{-1}$
NOT a negative activation energy
6. (a) 2-deoxyribose
(b) Base A

If Base B stated, allow 1 mark only for response including hydrogen bonding
7. (a) $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{Cl}^{-}$ Correct product

Balanced equation
1

1
(b) (i) Hydrogen bond

Oxygen (or nitrogen)
Only score this mark if type of bond is correct
(ii) Co-ordinate

Nitrogen (or oxygen)
Bond type must be correct to score this mark but allow M2 if bond is covalent
(c) Killing them or causing damage (medical side effects)

Allow any correct side effect (e.g. hair loss)
Allow kills healthy (or normal) cells

May attach to DNA in normal cells

