

A-Level Chemistry

 Effect of Temperature, Concentration and Pressure Mark SchemeTime available: 54 minutes Marks available: 50 marks

1. (a) Idea that it is hard to judge to the nearest 0.01 second or Idea that it is hard to judge the exact moment (that it becomes too cloudy / the cross disappears) or the idea of reaction time

Ignore ideas relating to accuracy (unless qualified)
(b) $0.083(3 \ldots$.
(c) M1 points plotted correctly (allow $\pm 1 / 2$ small square for each)

M2 suitable best fit curve that misses point at $49^{\circ} \mathrm{C}$ and passes within one small square of the other five points

If any points plotted incorrectly: best fit line based on their plotted points which may need to be more than one square away from some points
If no value calculated in (b), then M1 and M2 based on the other points (except the fifth anomalous point). A straight line may be allowed for M2 for the first four points.
If incorrect value calculated in (b): M1 based on all values being plotted correctly; M2 based on suitable best fit line for the plotted points (except the fifth anomalous point).
Penalise M2 if best fit line goes to 0,0 .
(d)

$$
\frac{1}{\text { value from their best fit line at } 40^{\circ} \mathrm{C}}
$$

$$
\operatorname{eg} \frac{1}{0.0345}=29(s)
$$

Ignore units
(e) as it forms a toxic gas or SO_{2} is toxic/poisonous or to limit amount of SO_{2} formed

Ignore reference to SO_{2} being harmful
Ignore reference to acid rain / pollutant
(f) reaction would take too long / too slow / take a long time / very slow Ignore reaction may not occur
Allow idea that it makes judging the moment when the cross disappears more difficult
2. (a)

M1 on at least one O atom two lone pairs and on at least one $\mathrm{OH} \delta+$ on H and δ - on O

M2 dotted line shown between lone pair on one molecule and the correct H on another

M3 O $\cdots \cdots$. $\mathrm{H}-\mathrm{O}$ in straight line
Accept pair of dots or crosses for lone pair in place of orbital shape (orbital shape may or may not include two electrons)
Ignore any partial charges on $\mathrm{C}-\mathrm{H}$ or $\mathrm{C}-\mathrm{O}$ bonds For straight line in M3, allow a deviation of up to 15° If a different molecule containing hydrogen bonding due to $\mathrm{O}-\mathrm{H}$ bond drawn (e.g. ethanol, water) or an incorrect attempt at the structure of methanol, then maximum of 2 marks (i.e. only penalise if would score all three marks otherwise)
(b) Idea that lone pairs have greater repulsion than bonding pairs

There must be a comparison between the repulsion of a lone pair and bonding pair
Allow covalent bond = bonding pair
(c)

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
Level 3 5-6 marks	All stages are covered and the explanation of each stage is generally correct and virtually complete. (6 v 5) Answer is well structured, with no repetition or irrelevant points, and covers all aspects of the question. Accurate and clear expression of ideas with no errors in use of technical terms.
Level 2 3-4 marks	All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete (4 v 3) Answer has some structure and covers most aspects of the question. Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. If any, only minor errors in use of technical terms.
Level 1 1-2 marks	Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete (2 v 1) Answer includes statements which are presented in a logical order and/or linked.
0 marks	Insufficient correct chemistry to gain a mark.

Stage 1

Describes the effect of catalyst use
1a use of a catalyst has no impact on equilibrium yield
1b use of a catalyst gives faster rate
1c use of catalyst lowers costs

Stage 2

Describes the effect of pressure
2a higher pressure gives a higher equilibrium yield
$2 b$ higher pressure gives a faster rate
2 c the higher the pressure, the greater the cost

Stage 3

Describes the effect of temperature
3a lower temperature gives a higher equilibrium yield
3b higher temperature gives a faster rate
3 c the higher the temperature, the greater the cost
Note that converse statements are fine (e.g. 1a higher temperature gives a lower equilibrium yield)
3. (a) 111(.11...)
(b) temperature
(d) M1 suitable vertical scale
should use more than half the axis to cover the points from 6.45 to 111

M2 points plotted correctly ($\pm{ }^{1}$ small square per point)
allow ECF for plotting of point found in part (a)

M3 best fit line drawn (within one small square of each point)

allow ECF for a line based on their plotted points, but only where the line continues to rise throughout the temperature range
(e) Time $=\frac{1000}{\text { value from graph at } 60^{\circ} \mathrm{C}}$

Working needs to be shown that includes a value from the graph at $60^{\circ} \mathrm{C}$
Use the value their line shows at $60^{\circ} \mathrm{C}(\pm 1 / 2$ small square $)$
(f) M1 many more particles/ions have (energy \geq) activation energy
need the idea that it is many / much more particles; allow reference to atoms / molecules instead of particles / ions

M2 more of the collisions are successful
allow idea of more successful collisions per unit time / greater frequency of successful collisions
4. (a) minimum energy
to start a reaction/ for a reaction to occur/ for a successful collision
(b) activation energy is high / few molecules/particles have sufficient energy to react/few molecules/particles have the required activation energy (or breaking bonds needs much energy)
(c) molecules are closer together/ more particles in a given volume
therefore collide more often
(d) many
$\underline{\text { more molecules have energy greater than activation energy (QoL) }}$
(e) speeds up a reaction but is chemically unchanged at the end
(f) increases the surface area
$5 . \quad$ (a) (i) M1
High (temperature) OR Increase (the temperature)
If $\mathbf{M 1}$ is incorrect $\mathbf{C E}=\mathbf{0}$ for the clip
If M1 is blank, mark on and seek to credit the correct information in the text

M2

The (forward) reaction / to the right is endothermic or takes in / absorbs heat
OR
The reverse reaction / to the left is exothermic or gives out / releases heat

M3 depends on correct M2 and must refer to temperature / heat

M3 depends on a correct statement for M2
At high temperature, the (position of) equilibrium shifts / moves left to right to oppose the increase in temperature

For M3, the position of equilibrium shifts / moves
to absorb heat $O R$
to lower the temperature $O R$
to cool down the reaction
(iii) M1 Increase in / more / large(r) / big(ger) surface area / surface sites

Mark independently
For M1 accept "an increase in surface"
M2 increase in / more successful / productive / effective collisions (in a given time) (on the surface of the catalyst / with the nickel)

For M2 not simply "more collisions"
Ignore "the chance or likelihood" of collisions
(b) M1

No effect / None
If $\mathbf{M 1}$ is incorrect $\mathbf{C E}=\mathbf{0}$ for the clip
If M1 is blank, mark on and seek to credit the correct information in the text

M2 requires a correct M1

Equal / same number / amount of moles / molecules / particles on either side of the equation
OR
2 moles / molecules / particles on the left and 2 moles / molecules / particles on the right

M2 depends on a correct statement for M1
In M2 not "atoms"
6. (a) M1 provides a different route / mechanism / pathway

Ignore reference to (frequency of) collisions, surface area or active sites

M2 with lower activation energy
Penalise reference to increasing energy of particles $(C E=0)$
Allow E_{a} / $E_{\text {act }}$ or definition of activation energy in M2
(b) M1 line $2=$ steeper than original and finishes at same height

M2 line 3 = less steep than original and finishes at half the height
If two correct lines are drawn but neither labelled, then allow 1 mark.
If two correct lines are drawn and only one is labelled, then allow 2 marks.
If only one correct line is drawn and neither are labelled, then 0 marks.
If two correct lines are drawn but line 2 is labelled 1 and line 3 is labelled 2, then allow 1 mark
Allow some unevenness in drawing of lines in terms of height it levels off at, with up to a quarter of a box of unevenness
At the start, lines must separate from the original before the first vertical line.
In terms of the origin, lines must start within one half of a square of the origin.
For each line ignore the time at which the line becomes horizontal it is the fact it is more or less steep than the original line that matters (along with the height at which it finishes)
(c) M1 more particles/molecules/reactants $/ \mathrm{H}_{2} \mathrm{O}_{2} /$ moles in given/same volume/space OR particles/molecules/reactants $/ \mathrm{H}_{2} \mathrm{O}_{2} /$ moles closer together

Penalise reference to changing the activation energy ($C E=0$)
For M1 do not allow area

M2
successful collisions are more frequent
For M2
successful collisions - allow reference to collisions with sufficient energy or collisions with the activation energy or effective collisions more frequent - allow reference to per unit time, per second (but ignore reference to rate of collisions, ignore chance of collisions, ignore likelihood of collisions)

