

A-Level Chemistry

Electrochemical Cells

Mark Scheme

Time available: 60 minutes Marks available: 58 marks

www.accesstuition.com

Mark schemes

1.	(a)	Lithium would react with the electrolyte/water Allow water will oxidise Li to Li ⁺ or Li will reduce water to hydrogen	1	
		E^{Φ} for Li ⁺ (/Li) more negative than for water or EMF= 2.21(V) or E^{Φ} Li ⁺ (/Li) < H ₂ O(/H ₂ ,OH ⁻) Ignore EMF is negative	1	
	(b)	0.54 - (-3.04) = 3.58 (V)	1	
	(c)	Non-standard conditions Allow non-aqueous conditions or different conditions	1	
	(d)	(+) 7 Accept VII	1	
	(e)	$Li^{+} + CoO_{2} + e^{-} \rightarrow Li^{+}CoO_{2}^{-} \text{ or}$ $Li^{+} + CoO_{2} + e^{-} \rightarrow LiCoO_{2}$	1	
	(f)	$Li \rightarrow Li^+ + e^-$	1	[7]
2.	(a)	$C_6H_{12}O_6$ + 6 H ₂ O → 6 CO ₂ + 24 H ⁺ + 24 e ⁻ Accept multiples		
	(b)	$O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$ Accept multiples	1	
	(c)	$\begin{array}{c} C_6H_{12}O_6 + 6 \; O_2 \rightarrow 6 \; CO_2 + 6 \; H_2O \\ \\ \textbf{Accept multiples} \end{array}$	1	

(d) $C(s) | C_6H_{12}O_6(aq), H^+(aq) | CO_2(g) || O_2(g) | H^+(aq), H_2O(I) | Pt(s)$

OR

3.

C|C₆H₁₂O₆, H⁺| CO₂ || O₂ | H⁺, H₂O | Pt M1 Must see following in correct order: $C \mid C_6 H_{12} O_6 C O_2 \parallel O_2 H_2 O \mid Pt$ M2 Cell completely correct Ignore H₂O on LHS Ignore state symbols Allow $H^+(aq) \mid H_2O(I)$ on RHS 0 marks if electrons included. 2 (Constantly) add reactants/glucose (and oxygen) OR keep concentration of reactants (e) constant 1 M1 Positive electrode $O_2 + 2H_2O + 4e(-) \rightarrow 4OH^-$ (a) (i) M2 Negative electrode $H_2 + 2OH^- \rightarrow 2H_2O + 2e(^-)$ Allow multiples, ignore state symbols If equations both correct but at the wrong electrodes allow 1 mark 1 1 $2H_2 + O_2 \rightarrow 2H_2O$ Mark independently Must be this way round 1 (ii) Increase (emf) If decrease/no change then CE=0/2; if blank then mark on 1 $2H_2 + O_2 \rightarrow 2H_2O$ will move to the right Or overall equation moves to the right Allow $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ will move to the right / oxygen half equation moves to the RHS / E^{Θ} O₂|OH⁻ half cell moves to the right 1

[6]

4.

		Must start at y axis	1	
			1	
(c)	(i)	Unchanged		
()	()		1	
	<i>/</i>		~ ~	
	(ii)	Water is the <u>only</u> product / fuel cell does not give out pollutants such as NO_x or SO_2 or C or CO or C_xH_y or unburnt hydrocarbons	or CC	2
		Not fuel cell does not give out pollutants unless pollutant stated		
			1	
(d)		2 is released because fossil fuels are burned to produce		
	OR	ctricity to generate hydrogen		
	UK			
	CO	<u>b is released</u> when methane reacts with steam to produce hydrogen		
		Allow CO_2 is released to produce the hydrogen		
			1	
				[9]
<i>,</i> ,	<i>(</i>)			
(a)	(i)	$H_2 + 2OH^- \rightarrow 2H_2O + 2e^- / H_2 \rightarrow 2H^+ + 2e^-$		
		Any order		
			1	
		$O_2 + 4e^- + 2H_2O \rightarrow 4OH^- / O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$		
		$O_2 + 4e + 2II_2O \rightarrow 4OII / O_2 + 4II + 4e \rightarrow 2II_2O$	1	
			1	
	(ii)	Hydrogen (electrode) produces electrons		
		Ignore reference to salt bridge		
		Do not allow at negative / positive electrode – must identify		
		hydrogen and oxygen		
			1	
		Oxygen (electrode) accepts electrons		
		Allow electrons flow to the oxygen electrode		
			1	
(b) Hydrogen / the fuel / reactants supplied continuously / fed in				
· /	2	Do not accept oxygen supplied as the only statement		
			1	

	(c)		e fuel cell, a greater proportion of the energy available from the hydrogen–oxy	gen	
			Allow less energy wasted / more efficient		
			Do not allow reference to safety		
				1	
	(d)	Hydr	ogen is flammable / H ⁺ corrosive / OH ⁻ corrosive / hydrogen explosive		
	(9)	riyai		1	
					[7]
1	(a)	Flec	ctron acceptor / gains electrons / takes electrons away		
	(u)	2100	Do not allow electron pair acceptor / gain of electrons / definition of		
			redox (QWC)		
				1	
	(b)	Cd(OH) ₂		
	()	0.0.(Do not allow 'Cd(OH) ₂ /Cd'		
				1	
		Sne	cies (on LHS) with the least positive/most negative electrode potential / lowest	F	
		Species (on LHS) with the least positive/most negative electrode potential / lower / smallest <i>E</i>		. ட	
			Only allow this mark if M1 answer given correctly or blank		
			Do not allow negative emf		
				1	
	(c)	(i)	1.5 (V) / 1.50		
	(0)	(1)		1	
		(::)	$2M_{PO}$, $2H_{O}$, Z_{P} , $2M_{PO}(OH)$, $2OH^{-1}$, Z_{P}^{2+1}		
		(ii)	$2MnO_2 + 2H_2O + Zn \rightarrow 2MnO(OH) + 2OH^- + Zn^{2+}$		
			Ignore state symbols		
			e ⁻ must be cancelled		
			(take care that Zn ²⁺ is on RHS)	1	
				1	
		(iii)	Allows ions to pass (through it) or words to that effect		
			Penalise passage of electrons		
			Allow mention of particular ions	1	
				1	
		(iv)	Allows electrons to flow / makes electrical contact / conductor		
			Allow acts as an (inert) electrode / anode / cathode		
				1	
		(v)	Zn is 'used up' / has reacted / oxidised		
			Allow idea that zinc <u>reacts</u>		
			Do not allow just zinc corrodes		
				1	
	(d)	(i)	3 / +3 / III		
				1	

5.

		$2Ni(OH)_2 + Cd(OH)_2 \rightarrow 2NiO(OH) + Cd + 2H_2O$ For correct nickel and cadmium species in correct order (allow H ₂ O missing and OH ⁻ not cancelled)		
		For balanced equation (also scores M2) Allow max 1 for M2 and M3 if correct balanced equation but	1	
		reversed. Ignore state symbols	1	
	(ii)	Metal / metal compounds are re-used / supplies are not depleted / It (the cell) can be re-used		
		Allow does not leak / no landfill problems / less mining / less energy to extract metals / less waste		
		Do not allow less CO ₂ unless explained	1	
(e)	(i)	$C_{2}H_{5}OH + 3O_{2} \rightarrow 2CO_{2} + 3H_{2}O$ Allow $C_{2}H_{6}O$		
	(")		1	
	(ii)	$C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$ Allow C_2H_6O	1	
	(iii)	(+)0.23 (V)	1	
	(iv)	\underline{CO}_2 released by combustion / fermentation / fuel cell / reaction with water	1	
		Can be answered with the aid of equations	1	
		(atmospheric) CO ₂ taken up in photosynthesis	1	
(a)	(i)	Co/Cobalt		[17]
(0)	(•)	If Co or Cobalt not given $CE = 0$ ignore case in symbol for Co		
			1	
		(+) 4	1	
		(+) 3 Allow 4 and 3 in either order		
			1	

6.

(ii) $Li \rightarrow Li^+ + e^-$

Ignore state symbols	
Allow e without -ve sign	
Do not allow equilibrium sign	

	(iii)	Platinum is a conductor	1
		(Platinum is) unreactive/inert	
		Ignore mention of surface area or catalyst	
		Allow 2 marks if two properties given on one answer line	
		Apply list principle to contradictions/wrong answers	
		Do not allow platinum resists corrosion	
			1
	(iv)	Li reacts with water/forms lithium hydroxide	
		Allow water breaks down (or is electrolysed) on re-charge	
			1
(b)	(i)	Pt SO ₃ ^{2−} (aq), SO ₄ ^{2−} (aq) ClO ₃ [−] (aq), Cl [−] (aq) Pt	
		State symbols an ',' not necessary	
		Allow in place of ',' NOT ',' in place of	
		Ignore H^+ and H_2O	
		Deduct one mark for each mistake (e.g. Pt missed twice counts as two mistakes)	
		Allow reverse order for whole cell	
		$Pt C^{-}, CIO_{3}^{-} SO_{4}^{2-}, SO_{3}^{2-} Pt$	
			2
	(::)	$CIO_3^- + 3SO_3^{2-} \rightarrow CI^- + 3SO_4^{2-}$	
	(ii)	$ClO_3 + 3SO_3^- \rightarrow Cl + 3SO_4^-$	1
			-
		Oxidising agent CIO_3^-	
			1
		Reducing agent SO ₃ ²⁻	
			1

[12]

1