

A-Level Chemistry

Electrochemical Cells

Question Paper

Time available: 60 minutes Marks available: 58 marks

www.accesstuition.com

1.

This question is about the development of lithium cells.

The value of E^0 for lithium suggests that a lithium cell could have a large EMF.

The table below shows some electrode potential data.

	E º/V
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04
$2 H_2O(I) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$	-0.83
$\frac{1}{2}I_2(s) + e^- \rightarrow I^-(aq)$	+0.54

the 1970s lithium-iodine cells became a common power source for heart pacemakers. ithium iodide is the final product of the cell reaction.
se the data in the table above to calculate the cell EMF of a standard lithium-iodine cell
n EMF value for a commercial lithium-iodine cell is 2.80 V
uggest why this value is different from the value calculated in part (b).
some lithium cells, lithium perchlorate (LiClO ₄) is used as the electrolyte.
Deduce the oxidation state of chlorine in LiClO ₄

(1)

_	
	Give an equation for the reaction that occurs at the negative lithium electrode.
– Total 7 ma	(To
	s question is about a glucose-oxygen fuel cell.
	ten the cell operates, the glucose ($C_6H_{12}O_6$) molecules react with water at the negative ctrode to form carbon dioxide and hydrogen ions.
	ygen gas reacts with hydrogen ions to form water at the positive electrode.
	Deduce the half-equation for the reaction at the negative electrode.
_	
	Deduce the half-equation for the reaction at the positive electrode.
- II	Cive the equation for the everall reaction that equipped in the Chapter everage final call
II.	Give the equation for the overall reaction that occurs in the Glucose–oxygen fuel cell.
_	
inum.	The negative electrode is made of carbon and the positive electrode is made of platinu
	Give the conventional representation for the glucose–oxygen fuel cell.
- -	
	State what must be done to maintain the EMF of this fuel cell when in use.

_	
2	
٠,	_

A representation of a hydrogen-oxygen fuel cell that operates in alkaline conditions is

$Pt|H_2|H_2O||O_2|OH^-|Pt$

(a)	(i)	Write a half-equation for the reaction that occurs at each electrode. Use the half-equations to deduce an overall equation for the cell.	
		Half-equation at positive electrode	
		Half-equation at negative electrode	
		Overall equation	
	(ii)	State and explain the effect, if any, of increasing the pressure of oxygen on the e.m.f of this cell.	(3)
		Effect on e.m.f	
		Explanation	
(b)	Com time.	plete the diagram to show how the e.m.f. of a hydrogen-oxygen fuel cell changes with	(2)
		e.m.f.	
		time	
(c)	(i)	Suggest the effect, if any, on the e.m.f. of this cell if the surface area of each platinum electrode is increased.	(1)
	(ii)	State the main environmental advantage of using a hydrogen–oxygen fuel cell to power a car.	(1)

(d)	Sug	gest why the use of a hydrogen-oxygen fuel cell might not be carbon-neutral.	
			m
Hydr	ogen	oxygen fuel cells are used to provide electrical energy for electric motors in vehicles.	
(a)	In a	hydrogen-oxygen fuel cell, a current is generated that can be used to drive an electric or.	;
	(i)	Deduce half-equations for the electrode reactions in a hydrogen-oxygen fuel cell.	
		Half-equation 1	
		Half-equation 2	
	(ii)	Use these half-equations to explain how an electric current can be generated.	
(b)	Ехр	lain why a fuel cell does not need to be recharged.	

(c)	To provide energy for a vehicle, hydrogen can be used either in a fuel cell or in an interna
	combustion engine.

Suggest the main advantage of using hydrogen in a fuel cell rather than in an interna	al
combustion engine.	

(d) Identify one major hazard associated with the use of a hydrogen—oxygen fuel cell in a vehicle.

(1) (Total 7 marks)

(1)

5. The table shows some electrode half-equations and the associated standard electrode potentials.

Equation number	Electrode half-equation	E ⁰ /V
1	$Cd(OH)_2(s) + 2e^- \rightarrow Cd(s) + 2OH^-(aq)$	-0.88
2	$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
3	$NiO(OH)(s) + H_2O(I) + e^- \rightarrow Ni(OH)_2(s) + OH^-(aq)$	+0.52
4	$MnO_2(s) + H_2O(I) + e^- \rightarrow MnO(OH)(s) + OH^-(aq)$	+0.74
5	$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(I)$	+1.23

(a)	In terms of electrons, state the meaning of the term oxidising agent.

(1)

vea	kest oxidising agent
Expl	anation
	diagram shows a non-rechargeable cell that can be used to power electronic devices. relevant half-equations for this cell are equations 2 and 4 in the table above.
	+ Cover
	Zinc — Carbon rod — MnO ₂ paste — Porous separator
	ZnCl ₂ paste
	<u> </u>
(i)	Calculate the e.m.f. of this cell.
(ii)	Write an equation for the overall reaction that occurs when the cell discharges.
(iii)	Deduce one essential property of the non-reactive porous separator labelled in the diagram.
iii)	

	(IV)	Suggest the function of the carbon rod in the cell.
	(v)	The zinc electrode acts as a container for the cell and is protected from external damage. Suggest why a cell often leaks after being used for a long time.
d)		echargeable nickel-cadmium cell is an alternative to the cell shown in part (c). relevant half-equations for this cell are equations 1 and 3 in the table above.
	(i)	Deduce the oxidation state of the nickel in this cell after recharging is complete. Write an equation for the overall reaction that occurs when the cell is recharged . Oxidation state
		Equation
	(ii)	State one environmental advantage of this rechargeable cell compared with the non-rechargeable cell described in part (c).
e)	Whe	ethanol–oxygen fuel cell may be an alternative to a hydrogen–oxygen fuel cell. en the cell operates, all of the carbon atoms in the ethanol molecules are converted into on dioxide.

(ii)	Deduce a half-equation for the reaction at the ethanol electrode. In this half-equation, ethanol reacts with water to form carbon dioxide and hydrogen ions.	
(iii)	The e.m.f. of an ethanol—oxygen fuel cell is 1.00 V. Use data from the table above to calculate a value for the electrode potential of the ethanol electrode.	
	Calculate a value for the electrode potential of the ethanol electrode.	
(iv)	Suggest why ethanol can be considered to be a carbon-neutral fuel.	
		ma

6.

(a) Lithium ion cells are used to power cameras and mobile phones. A simplified representation of a cell is shown below.

The reagents in the cell are absorbed onto powdered graphite that acts as a support medium. The support medium allows the ions to react in the absence of a solvent such as water.

The half-equation for the reaction at the positive electrode can be represented as follows.

$$Li^+ + CoO_2 + e^- \longrightarrow Li^+[CoO_2]^-$$

Identify the element that undergoes a change in oxidation state at the positive electrode and deduce these oxidation states of the element.	
Element	
Oxidation state 1	
Oxidation state 2	
Write a half-equation for the reaction at the negative electrode during operation lithium ion cell.	of the
Suggest two properties of platinum that make it suitable for use as an external electrical contact in the cell.	
Property 1	
Property 2	
Suggest one reason why water is not used as a solvent in this cell.	

The belo	half-equations for two electrodes used to make an electrochemical cell are shown bw.	
	$CIO_3^-(aq) + 6H^+(aq) + 6e^- \longrightarrow CI^-(aq) + 3H_2O(I)$ $E^0 = +1.45 \text{ V}$	
	$SO_4^{2-}(aq) + 2H^+(aq) + 2e^- \longrightarrow SO_3^{2-}(aq) + H_2O(I)$ $E^0 = +0.17 \text{ V}$	
(i)	Write the conventional representation for the cell using platinum contacts.	
		(2)
(ii)	Write an overall equation for the cell reaction and identify the oxidising and reduci agents.	ng
	Overall equation	
	Oxidising agent	
	Reducing agent	(0)
	(Total	(3) (12 marks ا
	·	•

(b)